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Abstract 
 
HydroBio developed a model to predict annual groundwater recharge (GWr) across 
approximately 50,000 square miles of North Central Texas at square-mile resolution in 
annual time-steps through 50 years (1960-2009). The model is defined by precipitation 
and evaporation-driven variables and measured permeability that were calibrated 
separately. GWr was calculated as a residual from annual precipitation and water 
disposition from stream discharge and landscape evapotranspiration (ETa). All model 
variables were calculated and manipulated as rasters so that the data are preserved 
spatially. 
 
The Remotely-sensed Dual Coefficient method was used to calculate ETa across the 
region using MODIS data for wet and dry conditions. Because all model inputs were 
measured data from weather stations, stream gages and land cover and permeability 
that were linked in separate calibration efforts, the resulting GWr values are expected 
to be correct relationally. The GWr outputs can be varied by scaling for fine 
adjustment for future application within regional scale modeling while calibration 
offers a better understanding of how to adjust the parameters.  
 

1. GMA8 Site Description 
 
The study area for GMA8, shown in Figure 1, comprises an area 34,964 square miles 
within the GMA8 boundary and a total of 48,909 square miles for the combined GMA8 
extent inclusive of the zone identified for the GMA8 boundary (Figure 1). 

 
 
 
Figure 1. Map 
of the GMA8  
Project area. 
The red outline 
is the original 
GMA8 
boundary. The 
gray outline is 
the GMA8 
project area 
that includes 
buffer areas. 
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2. Relational Groundwater Recharge Model Concept 
 
The structure of this GWr model is different from other groundwater models because it 
was assembled entirely from weather inputs, stream gage data, land cover data, remote 
sensing-based estimates of ETa, and published values of measured permeability. Absent 
are model variable adjustments that are often made for matching water tables in 
groundwater models. It is anticipated that this independence will be of value when this 
work is combined with more traditional modeling approaches.  
 
Table. Abbreviations used in this report. 
 

Table of Commonly Used Abbreviations 

AWP Intermediate synthesis of the multiple layers of STATSGO soil data that have been 
reduced, by averaging, to a single numeric value to represent soil permeability. 

BF Base flow. Subsurface component of discharge estimated using USGS streamflow 
partitioning program PART. 

EOS Earth observation satellites such as Landsat TM and MODIS. 

ET Evapotranspiration. 

ET0 Reference evapotranspiration. Reported in in/yr unless otherwise noted. 

ETa Annual evapotranspiration. Reported in in/yr unless otherwise noted. 

GAM Groundwater Availability Modeling Program operated by TWDB. 

GAP USGS survey to detect "gaps" in conservation coverage combined multiple sources of GIS 
data that classifies land cover nationwide. 

GIS Geographic information system. 

GMA8 Groundwater Management Area 8; defined by TWDB. 

GRD Groundwater Resources Division of TWDB. 

GWr Groundwater recharge is the residual of Rinfil minus ETa. Reported in in/yr unless 
otherwise noted. 

Kcb Component of ET derived the water use of a crop canopy. 

Ke Component of ET from wetted surfaces, including soil and water bodies. 

Landsat 
TM Landsat Satellite Thematic Mapper. 

MODIS Moderate Resolution Imaging Spectroradiometer. 
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NCRS Natural Resources Conservation Service. 

NDVI, 
NDVI* 

Normalized difference vegetation index used to quantify density of plant growth from NIR 
and SWIR. NDVI* is a calibrated form NDVI that is stretched from zero to one 
representing bare ground to maximally vegetated surfaces. 

NIR Near infrared. 

PART USGS stream partitioning program estimates base flow record in inches from gaged daily 
discharge and watershed area.  

Perm Permeability. Final value used to represent infiltration capacity of soil within model 
calculations. Reported in in/hr. 

Ppt Precipitation. Reported in in/yr unless otherwise noted. 

Q Discharge: surface water drained from recharge system. Reported in in/yr unless otherwise 
noted. 

RDC Remotely-sensed dual coefficient. ET estimation technique calibrated to land cover classes 
with ET flux data and satellite imagery developed by HydroBio. 

RefET Reference evapotranspiration estimation program available through the University of 
Idaho. 

Rinfil 
Infiltrated rainfall; the residual of precipitation minus discharge. Reported in in/yr unless 
otherwise noted. 

RO Runoff. Residual of discharge minus base flow.  

STATSGO State Soil Geographic Database. Permeability data is reported in cm/hr of each standard 
soil layer and is derived from laboratory analysis of the mapped soil unit.  

SWIR Short-wave infrared band. 

TWDB Texas Water Development Board. 

USGS United States Geological Survey. 

WSS Web Soil Survey. Online soil database operated by NCRS. 

 
 

3. Executive Summary 
 
A groundwater recharge (GWr) model for a 50-year period, 1960 to 2009, was developed 
for Texas Groundwater Management Area 8 (GMA8) through solving a simple water 
balance that yielded GWr as a residual from calibrated inputs. The simplified water 
balance approach is appropriate because the GMA8 GWr model was formulated for one 
square mile grid cells within annual time steps. On a landscape level, the opportunity for 
GWr to occur is directly dependent upon precipitation less the water that drains leaves the 
landscape as drainage or evapotranspiration. This is expressed as: 
 
 GWr = Ppt - Q - ETa   
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Where Ppt is precipitation, Q is total discharge and ETa is annual evapotranspiration. 
 
This water balance approach was spatially discrete with the variables measured, 
interpolated and estimated by pixels within rasters. Rasters are continuous fields of 
numbers that can be combined mathematically to solve the equation to yield GWr for all 
locations across the GMA8 region. The data input for solving GWr was calibrated prior 
to model assembly. Ppt and Q calibration occurred in discrete locations where 
measurements were obtained with values that were extrapolated and interpolated to larger 
areas. Ppt was calibrated from annual totals for stations located throughout the GMA8 
region. Ppt was then interpolated across the entire region by kriging for each of the 50 
years.  
 
Q was calibrated for representative watersheds that were free from disturbances 
(reservoirs, irrigation diversions, and urbanization) and that had sufficient periods of 
measurement. Q was then extrapolated to the entire GMA8 project region using 
published maps of permeability. Satellite data were used to calibrate for ETa using a 
vegetation index to scale against ET0 (ASCE Penman Monteith grass coefficient) that 
was kriged across the GMA8 region. These variables were calculated as rasters for each 
of the 50 years examined in the model.    
 
Two weather variables were necessary for calibration in the GWr model, ET0, and 
precipitation. Ppt is the driving variable that determines the magnitude of recharge; when 
annual Ppt is low, no water is available for GWr. At high annual Ppt, GWr is expected to 
also be high. ET0 was found to moderate Ppt for calculation of Q rendering the 
relationship quasi-linear and, therefore, more easily managed mathematically. An 
extensive record of precipitation was available for the project area.  
 
The meteorological record sufficient for spatial calculations of ET0 was relatively short—
few stations collected enough data for the calculation and those that did only covered 
about a decade. Calibrating ET0 to precipitation was chosen as the method for estimation 
of ET0 across the project area for the full 50-year record. Quarterly ET0 data were 
analyzed and annual ET0 data were selected for use in model calibration. Annual Ppt was 
spatially interpolated by kriging to produce raster inputs for calculation of ET0. A 
regression relationship between Ppt and ET0 was developed and kriged to model the 50-
year ET0 record.  
 
Q within the GMA8 GWr model was characterized through analysis of gaged watersheds 
that were calibrated to soil permeability. The STATSGO soil database, NRCS Web Soil 
Survey, and review of literature describing permeability and infiltration capacity of 
individual aquifers within the GMA8 model boundaries were used to assemble and 
validate a permeability raster layer (Perm) to serve as the basis for dynamic estimation of 
Q across the GWr model region. Although the USGS gaged record included 400 records, 
a suite of only 40 gages was selected to represent discharge conditions across GMA8. 
This suite was based on criteria of data continuity, length of record, location, size and 
freedom from disturbance. Data from the selected representative watersheds were 
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collected from USGS stream gages and mated with Perm, Ppt, and ET0 data in 
preparation for calibration of Q for extrapolation to the model region. 
 
To estimate the amount of infiltrated rainfall for GWr predictions, a technique was 
developed to estimate how much of the incoming Ppt drained from the watershed—thus, 
unavailable for aquifer recharge. This drainage was quantified as total gaged discharge Q, 
which was analyzed in 40 representative watersheds. The relationship between Q and Ppt 
was simplified and linearized by scaling the driving variable Ppt by ET0—a ration that 
better expressed the opportunity for GWr across the model region than Ppt, only. The 
slope of the linear relationship between Q and Ppt/ET0 (bQ) provided a way to spatially 
codify Q behavior as a raster. Perm and 50-year Ppt/ET0 averages were also interpolated 
as rasters. A multiple linear regression model using Ppt/ET0, bQ, and Perm were used to 
estimate Q. These raster calculations provided spatial estimates of Q. The Q predictions 
resulting from these analyses accurately modeled the Q observed in gaged data when spot 
checked for individual watershed. 
 
Data from MODIS imagery (241m pixels) were used to estimate ETa across the project 
region. To prepare for this estimation, Landsat TM data (30m pixels) were first calibrated 
to measured ETa and ET0 within published data sets. For estimation of ETa, a stretched 
version of NDVI was used, NDVI*. Calculation of NDVI* required the selection of a 
zero vegetation cover location on the MODIS imagery. These calibration targets were 
bare areas located within large quarries. To model the range of ETa observed in GMA8, 
record wet (2007) and dry (2005) years were chosen to spatially represent the endpoints 
of ETa across the varying climate conditions of GMA8. 
 
MODIS NDVI was made equivalent to Landsat TM NDVI using a mathematical 
transformation. Transformation of MODIS enabled the use of the ETa calibration at a 
much finer scale with Landsat TM data. ETa was calculated for vegetation by MODIS 
Pixel using the Remotely-sensed Dual Coefficient (RDC) method that employed ET0, 
NDVI* and fitted functions for three vegetation cover types: grassland, woodland and 
cropland. For estimation of ETa using the mapped vegetation cover type relationships, 
GAP data across the GMA8 region were reclassified into these three simple cover types.  
 
Urbanization greatly affects GWr through impermeable building footprints, roadways and 
parking lots that limit the area through which water can recharge. During the 50-year 
span of the GWr model period, the extent of the urbanized areas within the GMA8 model 
region has expanded significantly (e.g., Dallas-Fort Worth, Waco, Austin, etc.). Urban 
expansion was represented in the model for four time steps, 1960-1977 (from TDWR 
Land Cover Maps), 1978-1989 (interpolated contour), 1989-1999 (GAP Analysis from 
1999-2001 Landsat Imagery), 2000-2009 (from 2007 MODIS Imagery). These steps were 
held constant with no interpolation made for gradual annual changes. 
 
The effect upon GWr from expansion of urban areas was modeled using two key GWr 
variables: Q was increased with increasing area of impervious surfaces such as pavement 
and buildings, and water loss through evapotranspiration (ETa) was decreased when 
vegetation was replaced by urban hardscape.  A metric for estimating the degree of 
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urbanization through changes in Q and ETa was developed that used the ratio of average 
NDVI* in the model countryside to the NDVI* measured over each urbanized pixel as a 
decimal fraction.  This fraction was used to boost Q based on the degree of urbanization 
present in a pixel at a given year. ETa in the model automatically decreased because 
NDVI* within the urbanized zone decreased. No adjustment was made for interception 
losses. 
 
After the completion of calibration of the driving variables, these were assembled for 
calculation of GWr across the GMA8 project area. Under conditions of extreme Ppt/ET0, 
GWr exhibited an incorrect downward parabolic limb that indicated that the calibration 
for ETa through the entire range of dry to wet years was not adequately represented—
under conditions of high Ppt/ET0, ETa decreases because the evaporative driving force, 
represented by ET0 decreases due to cloud cover, high humidity and cooler temperatures. 
Calibration by modeling across the entire range of Ppt/ET0 would correct for this, 
however, recalibration of ETa was judged to be beyond the capability conferred by the 
available data sets--MODIS data were available only for a decade and so ETa could not 
be calibrated for extreme values of Ppt/ET0 because they were not available for all 
locations in the project area within the period of the MODIS record.  
 
The GWr final model adjustment to overcome the inadequate ETa calibration was based 
upon accepting the relationship for GWr for lower levels of Ppt/ ET0 and then changing 
the downward parabolic portion of GWr by replacing these aberrant values to follow a 
curve shape for diminishing returns. The diminishing returns curve is appropriate for 
GWr expected because Q increases proportionately during high levels Ppt/ET0 while ETa 
decreases. GWr must respond as a diminishing returns curve because quasi-Hortonian 
overland flow occurs during longer periods of saturated soils when wet cycles generate 
higher surface runoff. As more water is received through precipitation, less water is 
available proportionately for GWr.   
 
Two models for predicting GWr under extreme Ppt/ET0 conditions were applied for 
pixels that experienced a downward parabolic limb. The first model, “Plateau”, held the 
upper limb of GWr constant at the measured parabolic peak value. The second model, 
“Blended”, allowed a small increase above the “Plateau” commensurate with the 
expected shape of a diminishing returns curve. The Plateau and Blended models for GWr, 
corresponded in magnitude but demonstrated some subtle differences in spatial 
distribution.  
 
This approach to modeling GWr is completely new and provides a valuable 
understanding of the controlling processes and their spatial distribution. Because the GWr 
estimates are spatially calibrated to independent variables, including measured properties 
of Perm, land cover, ET0, Ppt, and Q, the model results are controlled by the actual 
environment as accurately as they could be represented. Spatial variation in GWr 
estimates corresponded to the varied environmental conditions within the project—
demonstrating the relational accuracy of the model. 
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The relational properties of the GWr results are an important consideration. Within any 
calibration attempt, the resulting calibration often carries systematic error inferred by the 
data that were used. Although we do not know where such biases occurred, the data and 
resulting GWr calculations are relationally correct—a property that lends the model 
inputs and outputs for scaling regionally. Scaling can be as simple as a applying a 
decimal multiplier to scale GWr up or down to balance with results from groundwater 
modeling working from the traditional perspective of balancing inputs to achieve water 
levels.  
 
The GWr prediction for GMA8 was an effort wholly independent of traditional 
groundwater modeling methods because it calibrated the parameters of the surface water 
balance to then calculate what proportion remained for potential recharge. This approach 
should be valuable for understanding the relative magnitude and interrelationship of the 
parameters used for calculation of GWr. This is valuable feedback so that these 
parameters can be represented correctly in other groundwater modeling. For example, the 
shape of ETa from dry to wet annual weather was formerly an unknown that was 
predicted during final model adjustments. Likewise, the quasi-linearity of Q vs. Ppt/ETo 
is an advancement of knowledge that can now be used in future TWDB groundwater 
modeling. 
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A1. Driving Model Variables 
 
Two key model inputs drive the 50 year annual groundwater recharge model, annual total 
precipitation (Ppt) and annual total ET0, all input variables being annual values. 
Groundwater recharge (GWr) estimation was guided by four linear equations (Figure 
A1). The slope and intercept of each equation were developed using the relationship 
between precipitation and the appropriate model variable, including ASCE Penman 
Monteith grass reference evapotranspiration (ET0), stream discharge (Q), the proportion 
of Ppt that infiltrated the ground (Rinfil), and evapotranspiration of native vegetation and 
crops (ETa). These variables allow GWr to be estimated for a given year from 
precipitation as a single input. ET0 was used as a driving variable for both ETa and Q 
estimation. An ET0 model was used to generate estimates of this driving variable based 
upon precipitation as an input since 50 years was desired for the model, but weather 
variables for calculation of ET0 were only available across the region for the past decade 
to decade and a half.   
 

Figure A1. GWr 
estimation for a given 
year “i” is guided by four 
Ppt-driven linear 
equations. 
 
1) ET0i = a + b * Ppti 
2) Qi = a + b * ( Ppt / ET0i) 
3) Rinfili = Ppti - Qi 
4) ETai = a + b * Ppti 
 
 
 
 
 

Spatial representation of Ppt and ET0 for the model was generated from point data and 
geostatistical interpolation and extrapolation (kriging). Logically, both Ppt and ET0 vary 
gradually from station to station and so, geostatistical methods were chosen for 
interpolating the spatial variability between stations. Spatial models of the 50-year 
precipitation record and a spatial model for estimating ET0 were developed to represent 
both of these driving variables in the GWr model. For the ET0 model, the stations that 
gather sufficient input for calculation of a Ref-ET-based ET0 were used as points to 
estimate annual ET0 as a function of precipitation. Thus, through correlation, annual 
precipitation was also used as a proxy for annual ET0.  
 

A2. Modeling Precipitation 
 
The GWr model was formulated to be dynamic from year to year across a 50-year 
calibration period. Weather stations that gather Ppt are point peppered across the GMA8 
region and so the data density of this variable is much better than other more complex 
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variables, such as ET0. The 50-year period was judged to be sufficient to capture the 
variability that can occur within the region. 
 

A2.1. 50-Year Precipitation Record 
 
Tabulated precipitation data from The Digital Climate Atlas (DCA) of Texas was 
provided by the TWDB (TWDB, 2009). Two to five hundred weather stations reported 
hourly precipitation in the project region each year. Quarterly, bi-annual, and annual 
sums were calculated for each year—these values were used to populate annual point 
databases. A 50-year point-precipitation record was compiled covering the project region 
at these time resolutions. Point values were interpolated spatially by kriging (applied with 
exponential semivariogram, 12-point variable radius, and 0.25 mile2 grid cells as a 
standard approach (Figure A2). 
 

Figure A2. Map of weather station locations and resulting kriged precipitation raster.  
Point measurements were used to interpolate precipitation values across the project 
region. 

A2.2. PRISM versus Rainfall Kriged from Texas Digital Climate Atlas 
 
PRISM provides spatial data similar to the kriged data generated from the Texas Digital 
Climate Atlas (DCA: OSU, 2009 and TWDB, 2009). For PRISM, weather data from 
stations across the country were collected together and then spatially interpolated by 
kriging. An added influence in the spatially continuous PRISM model is an algorithm tied 
to a Digital Elevation Model (DEM) to account for increased precipitation in 
mountainous terrain. This is important for filling data gaps in areas often overlooked by 
city and airport weather stations—often such areas are mountainous. Spatial interpolation 
in mountainous areas is a mechanism to adjust for the effects of elevation change as 
opposed simply to distance from a station that is the intent of krige calculations in the 
absence of elevation input.  
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For the GMA8 project, changes in elevation tend to be gradual and are generally 
insufficient to highly influence spatial distribution of precipitation. The Ozarks, well 
north of the project boundary, are the closest geographic feature to present an increase in 
precipitation that could be appropriately modeled with PRISM's elevation algorithm. 
Another potential drawback of the PRISM data is the 'blackbox' nature of the data set 
having raw data that was not accessible and station lists and data completeness that were 
not available for examination. Apprehensive of datasets that cannot be proofed, a 
decision was made to produce precipitation surfaces where the output can be directly 
checked against the input. PRISM and kriged DCA were compared for the same period.  
 
A drawback with PRISM data shows up in the comparison of the outputs of PRISM and 
DCA. The PRISM data fluctuated over short distances in a “shotgun” manner, having 
numerous points in close proximity with similar values that stand out as extremes from 
the surrounding area. The precipitation values around these points quickly drop off or 
ramp up only to display opposing characteristics at a nearby point.  
 
The kriged relationship that was developed using DCA was not perfect either, but was 
felt to more closely model average conditions across the project area rather than present a 
series of disconnected points. The krige for the DCA data averaged the surrounding 
points and allowed for the building of a smooth surface between the data points. This 
reduced the point island effect that was prevalent in the PRISM data. Kriged DCA, 
instead, created larger swathes of gentle change in precipitation rather than a continuous 
fluctuating surface (Figure A3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3. Comparison of PRISM and kriged Digital Climate Atlas precipitation surfaces. 
PRISM data from the second quarter of 2005 contains many “point islands” in the 
distribution (left). Digital Climate Atlas data kriged for the same quarter; kriging produces 
a smoother transition between data points (right). 
 

PRISM 
Digital 
Climate 
Atlas 
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The difference in the distribution shown in Figure A3 was heightened by the resolution of 
the data sets. PRISM data covers continental United States in 2.5 mile pixels (6.25 square 
miles), and so requires a resolution that would allow the data set to be manageable across 
very large regions. A scale of 0.5 mile pixels (0.25 square miles) was used for the kriged 
DCA rasters thus providing a 25x greater resolution than PRISM data. 
 
In summary, the choice to use DCA and a standard kriging approach was based on a 
series of issues that made the PRISM data a less ideal choice for the GMA8 project. 
PRISM data are widely available but the model inputs remain unknown. The special 
elevation algorithms, unique to PRISM, are likely not required across this region of 
Texas. Finally the “point island” distribution and larger sized pixels of the PRISM data 
are less ideal for the GMA8 model scale. These factors combined to make the DCA data 
that is assessable, finer resolution, and exhibits smoother kriged results a better choice for 
GMA8 modeling.  
 

A3. Modeling ET0 

 
Although Ppt is the major input variable for the GWr model, ET0 is also an important 
weather variable because it moderates the water introduced by Ppt to more accurately 
reflect the degree of aridity or humidity in the system. For example, Figure A4 presents a 
50-year krige of Ppt and a 50-year krige of Ppt/ ET0. Since both Ppt and ET0 change 
inversely from the southwest to the northeast across the project area, they enhance the 
effects of aridity to the west and humidity to the east. Both variables are required for 
providing competent spatial distribution of GWr. 
 

Figure A4. 50-year spatial average Ppt shown on the left has a range that is about 2.4x 
while 50-year spatial average Ppt/ET0 on the right has a range of about 3.4x. Ppt/ET0 is a 
better indicator of the aridity-humidity differences across the project area than Ppt alone. 
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A3.1 Recent Meteorologic record  
 
ET0 is a critical driving variable in GWr calculations but the meteorological record has 
data sufficient for calculating ET0 only in recent years (2000 to present). Because of the 
50 years of record desired for the GWr model, the brevity of the ET0 record necessitated 
a technique to predict this variable for model years prior to 2000. The recent 
meteorological record includes both precipitation and ET0 parameters. Fortunately, the 
close relationship between annual ET0 and annual precipitation permitted calibration to 
estimate ET0 during earlier years.  
 
Data were collected for all climate stations with sufficient annual records from 
Mesowest, Mesonet, and the Texas ET Network (Figure A5). The Ref-ET program (UID, 
2010) was used to calculate reference evapotranspiration for stations that did not report 
ET0 directly. REF-ET assimilates meteorological inputs from a suite of parameters to 
calculate a standard ASCE Penman-Monteith ET0. Quarterly, bi-annual, and annual ET0 
and precipitation were summed for each station. 
 

 
  
 
Figure A5. Climate 
stations used to 
calibrate ET0 to 
precipitation. 
Regression slopes and 
intercepts calculated at 
each station were 
kriged across the 
project region. Stations 
marked with an X were 
removed from the krige 
model after noting that 
they did not fit well 
within the suite of other 
stations.  
 
 
 
 
 
 
 
 

 
Five stations were removed from the suite of potential stations as indicated in Figure A5. 
These stations were removed after (1) first observing that the data were recognizably 
different from the surrounding 19 stations, and (2) observing those stations on Google 
Earth™. The stations that were removed from further consideration had recognizable 
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problems associated with providing a ET0 that was truly representative of standard 
conditions. The problems were all related to easily observable issues within the fetch of 
the stations (within 50 to 100 m) that included parked cars, roadways and asphalt, and 
major obstructions such as trees and hedges.   
 

A3.2 Optimization of Precipitation-ET0 Model 
 
Initial observations of the annual precipitation and ET0 record revealed a clear linear 
relationship between the two variables (Figure A6.). To find the most sensitive and 
representative method to describe this relationship spatially across the project region, 
analyses began with quarterly data because they provided the largest data set with the 
highest spatial resolution. This analysis then proceeded to biannual and finally annual 
scales by applying the observations from the quarterly and bi-annual data to the 
interpretation. This progression took place because the few years available since the 2000 
or later initiation of ET0 data collection represented a relatively sparse data set and 
biannual and quarterly time scales provided 2x and 4x the data magnitude. 

 
 
 
Figure A6. 
The overall 
annual Ppt-
ET0 trend is 
clear when 
data from 
across the 
project area 
are graphed 
together. 
 
 
 
 
 

 
Quarterly relationships were best described by two regression relationships—for winter 
months (quarters one and four) and for summer months (quarters two and three). This 
result indicated that all ET0 values could be accurately described on a bi-annual basis 
(Figure A7.). The quarterly data were then lumped into project-wide winter and summer 
groups and these further demonstrated the clear seasonal difference in the precipitation-
ET0 relationship (Figure A8).  
 
The results in Figure A7 and A8 are an important departure from biannual trends that are 
often used for calendar-based data. Instead of dividing the year into first half (January 
through June) and second half (July through December), the ET0 relationships show 
clearly that the year is best divided as winter (1st quarter and 4th quarter) and summer (2nd 
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quarter and 3rd quarter). While bi-modal trends are clear, the spread of data suggests a 
spatial influence that must be captured to preserve the integrity of the data structure 
(Figure A8). As described in numerous locations within this report, the method used to 
represent spatial data and to preserve spatial relationships was kriging the slope and 
intercepts of the individual Ppt-ET0 regressions. 
 

 

 
Figure A7. Winter months (quarters 1 and 4) and summer months (quarters 2 and 3) share 
trends.  Quarterly data can be described in terms of bi-annual trends. The regression 
slopes in the northeast (Athens) are notably shallower than those in the southwest 
(Mason) indicating a regional trend that exists within ET0 data. 
 
 

Figure A8. Quarterly data fits into bi-annual trends (left), but the spread of the data around 
the regression suggests spatial controls. When grouped into large NE and SW regions 
(right), systematic changes in slope are apparent: steep slopes in the dryer southwest, 
shallower slopes in the humid northeast.  
 
To model spatial variation in precipitation-ET0 relationships, individual relationships 
were determined at each climate station and interpolated across the project area. Using 
observations from the quarterly data, linear regression were fitted into bi-annual and 
annual precipitation and ET0 sums (Figure A9). The summation required for bi-annual 
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and annual data reduced the number of points available for fitting the relationships. 
Because of this data reduction, some stations in near proximity to one another, and with 
similar quarterly trends, were lumped in order to better define point-wise Ppt-ET0 
relationships. The annual evaluation provided curve fits that were no better (or worse) 
than those fitted for the quarterly and biannual relationships, leading to the conclusion 
that annual (calendar) data will perform well for capturing the spatial variability in ET0 
(Figure A9).  
 
ET0 was interpolated across the project region using the slope and intercept Ppt-ET0 
regression from each climate station or group of stations. Kriged rasters of slope and 
intercept of the Ppt-ET0 regression were generated at quarterly and annual resolution 
using the chosen standard krige parameters (exponential semivariogram, a variable 12 
point radius, and half mile grid cells). These data were used to develop the Ppt/ET0 
relationship shown in Figure A4 that was subsequently used for all further modeling. 
  

 
 
 
Figure A9. Annual 
fits performed as 
well or better than 
quarterly and 
biannual fits for 
each station. 
Biannual and 
annual Ppt-ET0 
relationships were 
fitted to individual 
stations in the 
project region. 
 
 
 
 

A3.3. Model Implementation & Testing 
 
The intent for fitting the spatial ET0 model was to (1) be able to estimate ET0 as a factor 
of Ppt for years prior to when the ET0-capable weather records began, (2) to fit this  
relationship for recent years, since ET0-capable stations are sparse and have come and 
gone within this period, and (3) to provide the basis for estimation of ET0 throughout the 
50-year period desired for the model. Ppt rasters expressed as annual totals in inches and 
ET0 slope and intercept rasters provided the means to estimate annual ET0 from Ppt 
according to a standard linear relationship with slope (b) and intercept (a) as in the 
foregoing (Equation A1). Annual project-wide ET0 was calculated for a given year by 
performing raster algebra with three raster inputs: (1) the annual precipitation for year 
“i”, (2) the ET0 regression intercept, and (3) the ET0 regression slope.  
 

ET0i = a + b * Ppti      Equation A1 
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ET0 estimation from spatially interpolated data were tested against measured data by 
calculating ET0 over a model watershed, Lampasas River, near a climate station reporting 
measured ET0 variables, Colorado Bend. Bi-annual and annual estimates were calculated 
using precipitation and ET0 data extracted from the spatially interpolated rasters for all 
years reported at the climate station. In the case of Lampasas, it appears that the annual 
regression may be a more accurate estimator of ET0 than the bi-annual estimates which 
deviate more than the annual. Colorado Bend was chosen because of its proximity to 
Lampasas, but the point and watershed do not overlap—the two were expected to have 
comparable magnitudes of precipitation and ET0, but not exact matches (Table A1). 
 
In summary, an extensive record of precipitation was available for the project area. The 
meteorological record sufficient for calculating ET0, however, was relatively short and 
few stations collected enough data for ET0 calculation on those that did only covered the 
last ten years. Calibrating ET0 to precipitation, however, allowed predictions of ET0 to be 
made across the entire project area for the full precipitation record with the estimation 
calibrated spatially. Examining the data at quarterly and bi-annual intervals increased the 
amount of data, enhanced signal detection, and improved the robustness of estimates. 
Linear regression equations for the Ppt-ET0 relationship were kriged across GMA8 and 
used to estimate annual ET0 for the 50-year model record. 
 
Table A1. Testing Ppt-ET0 model output. Ppt data extracted from rasters used to estimate 
ET0 over the Lampasas watershed, using bi-annual and annual regression estimates 
extracted from rasters, is compared to the ET0 calculated from measured meteorological 
data collected at nearby climate station Colorado Bend (the climate station does not fall 
within the watershed). 

 

A4. Summary  
 
An extensive record of precipitation was available for the project area. The 
meteorological data sufficient for calculating ET0, however, was relatively small—few 
stations collect enough data for the calculation and those that do only cover the last ten 
years. Calibrating ET0 to precipitation, however, allowed predictions of ET0 to be made 
across the entire project area for the full record of precipitation. Quarterly and annual Ppt 
and ET0 data were collected for model calibration. Quarterly and annual Ppt was spatially 
interpolated across the project area to produce raster GWr model inputs. A regression 
relationship between Ppt and ET0 was developed and spatially interpolated in order to 
model a 50 year record of quarterly and annual ET0. Modeled quarterly and annual ET0 
were then spatially interpolated across the project area to use as intermediate GWr model 
inputs. 
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Data provided from the work in Section A includes: 
• Annual kriged Ppt for 1960 – 2009 provided both as geodatabase and as 

individual rasters. 
• Annual ET0 estimates for 1960 – 2009 provided both as a geodatabase and as 

individual rasters. 
• Annual ET0 slope and intercept rasters in the model parameters geodatabase and 

as individual rasters. 
• ET0 calibration station locations point shapefile in the model parameters 

geodatabase and as a separate file. 
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B. Site Characterization: Gaged Watersheds and Soil Permeability 
 
Groundwater recharge (GWr) is the portion of precipitation that infiltrates the soil not 
lost through evapotranspiration. This is represented by a simple expression: GWr is the 
annual infiltrated rainfall (Rinfil) minus the water removed by annual evapotranspiration 
(ETa) (Equation B1). To model the first half of the GWr equation, Rinfil was broken down 
into elements that could be quantified for the model. To better understand Rinfil, two key 
parameters were analyzed for the model: (1) surface water discharge (Q) over 
representative gaged watersheds, and (2) soil permeability. Permeability functions as a 
proxy for the infiltration capacity of the soil, thus scaling the portion of rainfall permitted 
to infiltrate, and Q provides a measurement of the portion of rainfall that is not permitted 
to infiltrate for a given amount of rainfall (i.e., the portion that runs off from the surface 
that is then drained from the system).  

 
GWr = Rinfil – ETa      Equation B1 

 
Permeability data were compiled for the model by evaluating the State Soil Geographic 
Database (STATSGO), the Natural Resources Conservation Service (NRCS) Web Soil 
Survey (WSS), and regional permeability factors described in literature concerning areas 
within the project region. 
 
Modeling Q provided the framework for estimating Rinfil, the residual of Ppt minus Q. Q 
data were compiled for the model using gaged watersheds in the project region and the 
Ppt and ET0 data described in Section A. Rinfil was analyzed at the individual watershed 
scale to capture the Q-precipitation relationship.  
 
This section will describe the data sources, processing techniques and evaluation of the 
Perm and Q data.  
 

B1. Permeability Dataset 
 
Quantifying the influence that surface properties have on GWr requires an understanding 
of both permeability and depth to bedrock. Because soils are the medium between 
precipitation and the aquifer itself, they are a major control for GWr. Mainly through the 
constraint of permeability, soils dictate the rate at which precipitation infiltrates the soil 
surface, the rate of discharge, the volume of water that is stored and available to plants, 
and the rate at which water moves through the profile either laterally or vertically. 
Permeability is a scalar value that was be used to calibrate Rinfil and to then apportion this 
calibration throughout the GMA8 region. 
 
Terminology Note: Three terms are used to distinguish permeability data in this section. 
Permeability describes the raw numeric or descriptive data used to generate a model of 
the infiltration capacity of soils. Average Weighted Permeability (AWP) is the 
intermediate synthesis of the multiple layers of STATSGO soil data that have been 
reduced, by averaging, to a single numeric value to represent soil permeability. Perm is 
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the final value used to represent permeability within model calculations. Perm is equal to 
AWP across most of GMA8. Section B1 describes the process of collecting and 
evaluating permeability data. Subsections for each aquifer outcrop within the project 
region describe the validation process informed by a literature review and provide both 
methods and explanations for AWP adjustments made in select model regions. 
  

B1.1 Analysis of Soils Data in STATSGO 
 
Soil properties heavily influence the potential for recharge into outcropping aquifers 
because they influence how much water from precipitation runs off the landscape. 
STATSGO soil properties are generalized in a spatial soil database that defines, among 
other physical properties, permeability (Figure B1) and depth to bedrock (Figure B2) 
(PSU 2006). Because these data are what is available, STATSGO soil properties define 
the limit of our ability to assign parameters that influence recharge based on surface 
properties.  
 

 
 
Figure B1. Permeability 
rates were a major input to 
the HydroBio GWr model, 
and were used to represent 
surface properties. 
Permeability was a 
calibration parameter for 
stream discharge because 
such discharge is a factor 
of the water that is rejected 
from infiltration.  
 
 
 
 
 
 
 
 
 
 
 

Many methods to interpret the STATSGO data were proposed and tested to best represent 
recharge and discharge potential. STATSGO data were not entirely consistent for 
sampling and reporting depths. Soil properties were reported in 11 standard soil layer 
increments, from the uppermost 2 inches to 98 inches deep. As an example, many 
STATSGO components were only reported to 60 inches despite having deeper horizons. 
Due to data constraints and reasons to be discussed later, we chose to only examine the 
top 39 inches (1 meter) of the soil data presented in STATSGO.  
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Figure B2. Depth to bedrock 
varies across the GMA8 
study area. Soil depth 
influences recharge 
potential and was used to 
adjust permeability values. 
Soils less than one meter in 
depth were not adequately 
represented in the GWr 
model using simple AWP, 
and therefore were adjusted 
based on depth to bedrock. 
AWP is described below. 
 
 
 
 
 
 
 
 
 

B1.2 Reduction of Multi-Layer Soil Database to a Single Representative Layer 
 
A weighted average of the top one meter of the soil profile was chosen as the base soil 
metric to account for the limiting properties of the clayey B horizon and the influences of 
the surface layers. The permeability of each standard soil layer was weighted by 
thickness of the layer and averaged to both average and weight the permeability. The 
weighted permeability for all soil layers was represented as a single value that was given 
the name “average weighted permeability” (AWP). While this AWP method was 
determined to be reasonable for the majority of the soils across the GMA8 study area, 
unique regions required special attention and adjustments—regions where AWP did not 
sufficiently represent soil influences upon recharge in soils with highly variable 
permeability rates, and in soils shallower than one meter.  
 
Soil analyses were limited to the top meter (39 inches) of the soil profile because it 
contained the soil horizons most important to rejecting / accepting infiltration and 
because STATSGO data were the most reliable within the top meter: 
• The top one meter depth within STATSGO encompassed clayey B horizons that 

limit infiltration and retain the infiltrating water.  
• The top of STATGO data had the fewest data gaps and questionable data values. 
• Intake properties of the soil control the potential for recharge of aquifers, these 

properties are well defined by the top meter of soil. 
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• Initial calculation showed that 39 inches should be a sufficient depth to describe the 
potential for recharge: 39 • 0.3 retention  at field capacity = 11.7 inches retention. 
Retained water is then extracted from the soil by ETa throughout the year.  

 

B1.3 AWP for Shallow Soils and/or Highly Variable Permeability  
 
Weighting for the effect of underlying aquifer bedrock was applied in the model for soils 
that were shallower than one meter. Where shallow soils overlay aquifer outcrops, flow 
into the aquifer could occur more readily. An assumption was made that the infiltration 
capacity through the underlying rock was non-limiting, for example the presence of 
cracks and joints would transmit water downward that could not be held within the 
shallow overlying soil. This calculation was made to represent conditions overlying 
aquifer outcrops that were believed to readily accept infiltration. 
 
During the AWP calculation, STATSGO values for shallow rocky soils contained null 
values that did not enter the calculation for soil properties, only the layers with numeric 
values were represented in AWP. The STATSGO soil properties are relational (scalar) 
values that effectively treat all soils as having a full one meter thickness. In terms of 
transmitting water, however, the thinner the layer, the less the retention and the faster the 
travel time; factors that enhance recharge.  
 
To account for the increased recharge potential in shallow soils, STATSGO depth to 
bedrock data were used to delineate soils shallower than 1 meter. Based on the 
knowledge that the shallow soils permit faster and more efficient recharge to the aquifer  
(Cooper 1990), HydroBio set out to adjust modeled permeability accordingly. All soil 
depths less than a meter to bedrock were adjusted to reflect higher actual recharge 
potential. As soil depth to bedrock decreases, the adjustment factor to permeability 
increases. Adjustments are based on Equation B2.  
 
 Adjusted Permeability = (1 meter / STATSGO Depth to Bedrock) x AWP  Equation B2 
 
Adjustments to recharge potential were also made for soils with high permeability 
variability. Within the Nacatoch and Blossom aquifer outcrops, for example, very slowly 
permeable horizons exist within the first meter of soil below much higher permeability 
layers at the surface. Within these outcrops, recharge rates are dictated by the limiting 
clay horizons. Applying the AWP for highly variable soil profiles containing very slowly 
permeable layers artificially inflated recharge potential due to the course textured 
material at the surface, therefore the permeability of the most limiting layer was used in 
place of AWP to represent the recharge potential for the entire profile as dictated in these 
circumstances by the limiting clayey B horizon. 
 
 
 



 B6

B1.4 Proofing STATSGO 
 
Although the STATSGO database provides highly useful information, it may contain 
errors. Suspect data, identified by searching for anomalous high or low values, were 
compared with soil surveys available through the Natural Resources Conservation 
Service (NRCS) online service in the form of Web Soil Survey (WSS) (NRCS 2011). 
WSS is an online collection of the most up-to-date soil surveys performed by NRCS. Soil 
data were organized as map units of discrete soil series or complexes of multiple soil 
series. Reported soil series properties included horizon formation, permeability, drainage, 
parent material, climate, water holding capacity, landform type and location, frequency of 
flooding, depth to water table, and depth to bedrock. Average permeability, permeability 
of the most limiting layer, and depth to bedrock were available through both STATSGO 
and WSS. Since Web Soil Survey contained the most up to date soil data and was less 
generalized, it was used to adjust raw STATSGO data where anomalous values were 
detected. Over aquifer outcrops, STATSGO and WSS data were evaluated using random 
sampling and specific sampling in areas with unusually high or low values; evaluation 
found good agreement between the two data sources. 
 
In the calibration process, suspect STATSGO-derived permeability values were 
compared to permeability values reported on WSS. If discrepancies were discovered, the 
raw STATSGO permeability values were adjusted to reflect the smaller scale soils 
description in WSS. WSS was also used to cross check depth to bedrock values found 
using STATSGO. Table B1 summarizes instances of inaccurate STATSGO data detected 
and corrected using WSS. 
 
The characteristics of the soil profiles described by STATSGO data and NCRS soil 
surveys are presented in the sub-sections that follow. These sections, presented by aquifer 
outcrop, explain the additional steps in processing STATSGO data to develop the 
permeability dataset, model Perm. In the reduction of the multi layer STATSGO database 
to a single representative unit, one of three different metrics presented at the beginning of 
this section was employed depending on the unique conditions within each outcrop. (1) 
AWP, the first metric, was applied across the entire project area before soils were 
analyzed by aquifer outcrop. After analysis, in some cases, AWP was replaced with one 
of the other two metrics: (2) AWP modified using equation B2 to adjust permeability 
upward based on depth-to-bedrock for shallow soils, or (3) the use of the most limiting 
soil layer from highly variable profiles in which the effects of restrictive layers such as 
clayey horizons that were not adequately reflected in AWP. The metrics used to represent 
permeability for each aquifer outcrop are summarized in Table B1 and detailed in the 
following sub-sections. 
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Table B1. Overview of final metric used to represent permeability in the model for each 
aquifer outcrop within the model. 
 

Aquifer Outcrop Perm Metric Used Adjustments to STATSGO 

Trinity 
AWP, depth-to-bedrock 
applied to shallow soils 
in southern Trinity. 

Unreasonably high permeability rates 
reported by STATSGO in Comanche, Erath, 
and Hood Counties were upwards of 6.5 
in/hr—values only possible in alluvial soils, 
not the weathered shale and sandstone 
derived soils of this area. NCRS WSS 
measurements provided replacement 
permeability rates ranging from 0.5 - 0.75 
in/hr. 

Edwards-Trinity 
(Plateau) 

AWP with depth-to-
bedrock adjustment for 
shallow soils. 

none 

Edwards 
Balcones Fault 

Zone 

AWP with depth-to-
bedrock adjustment for 
shallow soils. 

none 

Nacatoch 
Most limiting layer used 
for highly variable soil 
layers. 

none 

Woodbine AWP. none 

Blossom 
Most limiting layer used 
for highly variable soil 
layers. 

none 

Paleozoics 
AWP with depth-to-
bedrock adjustment for 
shallow soils. 

none 

 

B1.4.1 Analysis of STATSGO Data—Trinity Aquifer 
 
The Trinity outcrop spans the entire western and northern border of the GMA8 project 
area, and displays a wide range of recharge values attributed to variability in 
precipitation, ET, lithology, and soil properties. Soils and permeability vary greatly 
between the northern extent of the aquifer in Oklahoma and Arkansas, and the shallow, 
calcic soils of the southern extent. The soil properties that influence recharge that were 
derived from STATSGO data are addressed in this section for each general portion of the 
Trinity Aquifer outcrop. 
 
The northern extent of the Trinity outcrop, located north of the Red River, exhibits 
significantly different soil properties than the remainder of the outcrop. The alluvial 
valley along the Red River is dominated by sandy and loamy alluvium that promotes high 
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permeability and associated recharge rates. Moving north from the Red River, higher 
landform positions contain weathered sandstone and shale of the Ouachita Mountains and 
soils consist mainly of clay residuum from weathered shale. These sediments restrict 
permeability and recharge in contrast to the high permeability of the sandy and loamy 
alluvium along the river.  
 
The portion of the Trinity outcrop extending from Tarrant County, west of Dallas, 
southward to Lampasas County is characterized by weathered shale and sandstone of at 
least 1 meter deep. This promotes moderately low permeability and recharge rates. The 
STATSGO data contained a number of major data flaws in Comanche, Erath and Hood 
counties that erroneously inflated permeability rates. STATSGO reported permeability 
rates upwards of 6.5 in/hr, which is possible only in coarse alluvial sediments, but not 
soils derived from fine sandstone and shale residuum. This was confirmed by 
permeability rates reported in soil survey data found on Web Soil Survey (NRCS 2011). 
Permeability rates were decreased from upwards of 6.5 in/hr, to values in the 0.5 – 0.75 
in/hr range, as reported in the soil surveys.  
 
Sediments overlying the Trinity aquifer outcrop are markedly different in the segment 
between Lampasas and Bexar Counties (San Antonio). STATSGO Soils here were 
generalized as shallow, well drained, moderately permeable limestone residuum. Areas 
that are shallower than 1 meter, the depth that Equation B2 considers, were adjusted to 
reflect the increase in recharge potential because the soils have relatively poor water 
holding capacity and are shallow. The Edwards Plateau portion of the Trinity aquifer 
outcrop is characterized by shallow, limestone dominated soils. The influences of these 
features and properties on recharge potential are discussed in the Edwards-Trinity Plateau 
Aquifer section. 
 

B1.4.2. Analysis of STATSGO Data—Edwards-Trinity (Plateau) 
 
The Edwards-Trinity Plateau outcrop is unique within the GMA8 study area. The unique 
characteristics are due to soils that are relatively shallow, well drained and have poor 
water holding capacity. These properties are related to high recharge rates due to the 
absence of significant soil water retention. Soils occurring over the other aquifer outcrops 
in the GMA8 region are generally deep and provide a buffer between precipitation and 
recharge due to storage capacity. Water held in the vadose zone is also available to 
vegetation and is prevented from recharging underlying aquifers by ETa. Because the 
typical soils across GMA8 are deeper than one meter, the shallow soils in the Edwards-
Trinity Plateau were treated differently in the GWr model. 
 
The permeability term in the HydroBio GWr model is based on the average weighted 
permeability (AWP) of the top 39 inches of soil. The shallow soils of the Edwards-
Trinity Plateau were not sufficiently represented using AWP so permeability rates were 
adjusted as a function of depth. The soils of the Edwards-Trinity Plateau are moderately 
permeable, but due to their shallow depth and low water retention, precipitation should 
travel relatively easily through the soil and into the bedrock outcrop. The outcrop is 



 B9

commonly comprised of weathered limestone, which is not a limiting permeability layer, 
and therefore the soil profile was considered well drained.  
 
Very small gaps in the STATSGO depth to bedrock data existed within the Edwards-
Trinity Plateau outcrop, as seen in Figure B3. These areas were investigated using WSS 
and gaps were filled, where appropriate. Fortunately, most areas that had missing depth to 
bedrock data consisted of soils deeper than 39 inches and, therefore, did not require 
adjustment.  
 

 
 
Figure B3. Depth to 
bedrock is relatively 
shallow in the 
southern model 
region, which 
includes the 
Edwards-Trinity 
Plateau and 
Balcones Fault 
Zone. Shallow soils 
reject less 
precipitation to 
recharge, and 
therefore average 
permeability rates 
were adjusted as a 
function of depth.  
 
 
 
 
 
 
 
 
 

 

B1.4.3. Analysis of STATSGO Data—Edwards Balcones Fault Zone 
 
The soil and lithologic properties of the Edwards Balcones Fault Zone are similar to those 
of the Edwards-Trinity Plateau and were handled similarly. Recharge zones primarily 
consist of sinkholes, faults, and crevices, overlain by shallow, well-drained soils. 
Sinkholes and faults were generally associated with shallow soils, and permeability rates 
for shallow soils were adjusted upward because limestone bedrock generally provides no 
resistance to water intake. Equation B2 was applied to shallow soils over this aquifer 
outcrop, thereby enhancing Perm.  
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B1.4.4 Analysis of STATSGO Data—Nacatoch Aquifer 
 
The literature suggests recharge rates over the Nacatoch Aquifer outcrop are limited due 
to very slowly permeable layers covered by coarser textures that would, otherwise, 
enhance infiltration (Ashworth, 1995). This coarse material skews the actual recharge 
potential when modeling the AWP of the upper meter of the soil profile. Analysis of the 
STATSGO data and most limiting layer of typical profiles across the outcrop confirmed 
the occurrence of very slowly permeable layers buried with significantly higher 
permeable sediments with the exception of an infiltration-accepting region in alluvial soil 
profiles in the northeastern portion of the outcrop (Figure B4).  
 

 
 
 
 
Figure B4. The most 
limiting permeability 
layer of the Nacatoch 
soils greatly influences 
recharge potential and 
was therefore used as 
the permeability input 
for the GWr model.  
In the northeast region 
of the outcrop the 
lowest permeability soil 
layer (the most-limiting 
layer) accepts moderate 
amounts of infiltration 
in some areas of river 
alluvium. 
 
 
 
 
 
 

 
The AWP across the outcrop averages 0.8 in/hr, which is relatively slow compared to the 
remainder of the GMA8 study area. However, the permeability of the most limiting layer 
averages 0.43 in/hr, including alluvial material associated with the Red River which is 
consistently permeable throughout the soil profile. The AWP for the soil profile over the 
Nacatoch outcrop was up to four times higher than the permeability of the most limiting 
layer due to the high variability in permeability rates within the profile. Due to the large 
difference between limiting layer permeability and the average weighted permeability, 
the limiting layer was used to dictate recharge rates. This rejects precipitation in areas 
where high variability in the profile obscured the affect of a very slowly permeable layer 
in the averaging procedure.  
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The Red River soils consist of sandy and loamy alluvium with high permeability rates 
comprising the majority of the roughly one third of the aquifer outcrop that is capable of 
accepting recharge. Another notable section of high permeability is the intersection of the 
outcrop with the Sulphur River in southern Red River County. Other such coarse alluvial 
soils exist along stream intersections within the outcrop and these locations are reflected 
in the STATSGO data with high permeability. STATSGO soil profiles consisting of 
sandy and loamy alluvium throughout the profile in the Red River area lacked 
infiltration-limiting layers in deeper profile positions, thus allowing recharge in these 
areas. Within the Red River vicinity, the lowest permeability soil layer did not limit 
infiltration and use of the lowest permeability layer as the model input Perm did not 
significantly differ from values derived from using AWP.  
 
A small portion of the outcrop that has moderately permeable soils exists in central 
Bowie and Red River counties. These soils are not associated with alluvium, however, 
and are comprised of residuum from weathered shale and sandstone. In these areas as for 
the alluvium, the permeability through the soil profile did not vary significantly and the 
most limiting layer was notably different from the AWP. Application of the most limiting 
permeability layer for Perm values in the Nacatoch was chosen to allow limiting layers in 
the profile to hinder infiltration where present while allowing infiltration in areas of 
alluvium lacking infiltration-limiting soil layers. 
 

B.1.5. Analysis of STATSGO Data—Woodbine Aquifer 
 
The AWP of the top meter of soil across the Woodbine outcrop is generally high. AWP 
ranges from 0.3 in/hr in clayey soils and up to 5 in/hr in alluvial sediments. The average 
permeability over the entire outcrop is 1.42 in/hr, significantly higher than the 
surrounding landscape and outcrops. Another important factor in determining potential 
recharge from soil permeability is the capacity of the most limiting layer to transmit 
water. Across the Woodbine outcrop, even the most limiting soil layer is relatively more 
permeable than the soils of the surrounding landscapes and outcrops, suggesting that high 
recharge rates are possible. 
  
Along the north-south stretch of the Woodbine aquifer outcrop, there is low variability in 
the permeability rates. Most of the variability occurs along the Red River within the east-
west stretch of the outcrop where the most permeable soils occur due to the coarse 
alluvial material associated with the river. However, there is a large patch of low 
permeability soils at the northernmost point of the outcrop located in northwestern Bryan 
County, OK (Bryan is located above Grayson and Fannin Counties in Texas; Figure B5). 
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Figure B5. Perm rates of 
the soils overlaying the 
Woodbine Aquifer are 
significantly higher than 
surrounding soils.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

B.1.6. Analysis of STATSGO Data—Blossom Aquifer 
 
Soils overlying the Blossom Aquifer closely resemble the properties of the soils 
overlying the Nacatoch Aquifer. Review of the STATSGO and soil survey data revealed 
that very low permeability horizons exist below relatively high permeability near the soil 
surface. Due to the occurrence of these limiting layers, the standard application of AWP 
for the top meter in the GWr model was not appropriate for this outcrop. Therefore, as 
applied for the Nacatoch outcrop, the most limiting layer approach was selected to 
represent the permeability input for the GWr model.  
 
Like the Nacatoch outcrop, highly permeable soils also exist within the Blossom outcrop. 
These high permeability soils are mostly associated with coarse alluvium occurring in 
proximity to major streams. Around 10% of Blossom outcrop soils consist of Red River 
alluvium (Figure B6). Representing the soil properties with the most limiting layer did 
not greatly alter the recharge capacity of the alluvial sediments, since they are relatively 
evenly permeable throughout the top 39 inches of the soil.  
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Figure B6. The 
most limiting layer 
was used to 
represent 
permeability in the 
Blossom aquifer 
outcrop due to the 
large difference 
between surface 
texture and fine 
textured 
subsurface soils.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B.1.7. Analysis of STATSGO Data—Paleozoic Aquifers 
 
The soils overlaying the Paleozoic outcrops are shallow and contain high percentages of 
coarse material. Analysis of the STATSGO depth to bedrock data revealed extremely 
shallow, sandstone-derived soils to the southwest of the formation transitioning to deeper, 
limestone derived material to the north (Figure B7). After the analysis of soil survey data, 
we concluded that permeability rates should be adjusted upwards to account for the 
shallow soils and rapid recharge potential of the area. In particular, the southern half of 
the Paleozoic outcrops required permeability adjustment because most soils are less than 
20 in, with some areas having only 4 inches of soil overlying bedrock. The soils with 
sandstone parent material are sandy/loamy at the surface and clayey in the subsurface. 
Normally the clay horizons would limit permeability; however these soils contain high 
percentages of coarse material such as gravel that provide pathways for infiltration 
though the profile.  
 
Soil surveys also described the soils in both the northern and southern portions of the 
Paleozoic aquifers as well drained, which further supported the application of a depth to 
rock permeability adjustment for the outcrop. Water holding capacity was very low, 
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which is partly a consequence of shallow soils. The combination of well drained, shallow, 
and poor water retention of these soils suggested that potential recharge would be high in 
this region. If precipitation moves quickly through the thin layer of soil above bedrock, 
then that water has little potential to be disposed by plants or surface discharge. Due to 
these conditions, Equation B2, adjusting for depth to bedrock, was also applied to this 
region to better represent recharge potential and to maintain consistency in permeability 
adjustments made for similar soils occurring above the other aquifer outcrops.  
 
 
 
 
Figure B7. The 
soils overlying 
the Paleozoic 
outcrops were 
adjusted 
upwards to 
reflect higher 
recharge 
potential from 
shallow soils. 
 
 
 
 
 
 
 
 
 
 

B2. Individual Watershed Q Data, the Basis for Calibrating for Perm 
 
Gaged watersheds were analyzed to gain an understanding of Q conditions within small 
defined areas. Individual watersheds capture data representing physical relationships 
between model variables. If Rinfil can be understood for a multiple small watersheds, this 
knowledge can be extrapolated for similar watersheds based on the underlying Perm as 
represented in STATSGO and regional climates affecting the humidity status of that 
location as typified by Ppt/ET0. 
 

B2.1. Selecting Representative Watersheds 
 
The individual watersheds used for Rinfil calibration were chosen based on criteria to 
assure that each watershed would produce representative discharge measurements. To 
limit our data set to detect clear and interpretable relationships, we selected watersheds 
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most likely to represent the “pristine” conditions for Ppt, Perm, and Q. Those watersheds 
with significant disturbances such as urbanization or irrigation, likely to influence Q 
behavior, were removed. Thus, a representative watershed should provide a clear signal 
of the interaction between Ppt, Perm, and Q without the noise potentially introduced by 
disturbances to the natural conditions. Representative watersheds selected from the 400 
USGS gages in the GMA8 region had: 
 

• Adequate discharge record for use with USGS streamflow partitioning program 
(PART). 150 of the 400 gages had continuous daily discharge records. 80 of these 
had greater than 3 years of continuous data recorded during or after 1960. 

 
• Small, well-constrained watershed boundary (1000 mi2 or less). Forty of the 

pool of 80 gages that had adequate discharge records met the size criteria and 
were non-redundant (where multiple gages were present on a single stream, the 
gage with the most continuous data was selected).  

 
• No disturbances in the watershed. A survey of the remaining 40 watersheds was 

conducted on images from Google Earth to remove watersheds with significant 
flow pattern disturbances, such as irrigation, upstream reservoirs, and 
urbanization.  

 

B2.2. Processing Individual Watershed Data 
 
After reducing the USGS gages within GMA8 to a subset of representative watersheds, 
individual watershed boundaries were outlined using the National Elevation Dataset layer 
(USGS, Accessed 2010). A polygon shapefile was generated for each watershed. Daily 
discharge measurements were then downloaded and organized as text files (USGS, 
Accessed 2010). And finally, the USGS streamflow partitioning program (PART) was 
used to sum annual discharge and estimate annual base flow from daily discharge text 
files (USGS, Accessed 2010) (Figure B8). PART normalizes discharge measurements to 
the watershed area and reports discharge and base flow in linear units. 
 
The discharge and base flow data were joined with the variables Perm, ET0, and Ppt. 
Watershed polygon shapefiles were used with the ArcMap zonal statistics tool to estimate 
the mean Perm, ET0 equation variables, and annual Ppt for the 50 year model record 
within each watershed. A table was populated for each watershed combining all annual 
data (Ppt, measured Q, estimated BF) as well as static spatial data (slope and intercept of 
ET0 equation, Perm). Table B1 summarizes the data for the 24 watersheds used in Rinfil 
calibration. 
 
Initial evaluation of each watershed data table consisted of plotting annual Q 
measurements as a function of annual Ppt. During this evaluation, several potential 
watersheds were eliminated for being non-representative. Some watershed data showed 
high scatter which obscured the Q and Ppt relationship. Other watersheds showed 
variability that was clearly driven by factors other than Perm and Ppt (Figure B9). For 
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example, the Comal River gage was not useful for project-wide predictions of Q because 
nearly all of the flow gaged at Comal is derived from springs (Wahl, accessed 2011). The 
initial evaluation process reduced the representative watersheds to the 24 watersheds 
described in table B1. 

 
 
 
 
Figure B8. Example of 
USGS PART streamflow 
partitioning results for a 
moderate permeability 
basin. The program 
estimates base flow, in 
inches, from daily gaged 
discharge volume and 
watershed area. 
 
 
 
 
 
 
 
 
Figure B9. The measured Q 
and predicted BF record for 
the Comal River Watershed 
are not useful for 
calibrating Rinfil. The Q 
record is invariant with 
precipitation and BF 
estimates are nearly equal 
to the measured Q. Nearly 
all of the flow gaged at 
Comal River is derived from 
springs (Wahl, accessed 
2011). Comal is therefore 
not representative of the 
surface and climate 
conditions used to develop 
the Rinfil model. 
 
 
 

The gages presented in Table B2 were used to calibrate Q to annual climate conditions 
and to spatially extrapolate Q conditions beyond the representative boundaries. The 
temporal and spatial calibration process is described in the Section C: Spatial 
Extrapolation. 
 



 B17

Table B2. Overview of gaged watersheds used in Rinfil calibration. USGS number, name, 
drainage area, and discharge (Q) data were downloaded from USGS NWIS (National Water 
Information System). The Q record is the period over which continuous daily discharge 
data was available. Base flow (BF) was estimated using the USGS streamflow partitioning 
program PART. Permeability was averaged over each watershed from a raster adapted 
from the STATSGO soil database (described in Section B1. Precipitation (Ppt) was 
averaged over each watershed from rasters kriged from the Digital Climate Atlas point 
precipitation database.  
 
 

USGS 
Number USGS Name 

Drainage 
Area 
(mi2) 

Q Record Perm 
(in/hr) 

Avg. 
Ppt 
in/yr 

Q 
Avg. 
in/yr 

BF 
Avg. 
in/yr 

08150800 Beaver Ck nr 
Mason, TX 215 1964 - 2008 2.28 29.18 1.22 0.41 

08065800 Bedias Ck nr 
Madisonville, TX 321 1968 - 2009 1.34 43.97 9.13 0.84 

08086290 Big Sandy Ck abv 
Breckenridge, TX 280 1963 - 2009 0.71 27.97 1.37 0.06 

08044000 Big Sandy Ck nr 
Bridgeport, TX 333 1960 - 1994, 

2005 - 2009 1.14 33.47 2.72 0.83 

07332500 Blue River near 
Blue, OK 476 1960 - 2009 0.95 41.27 9.33 3.31 

07332600 Bois D Arc Ck nr 
Randolph, TX 72 1963 - 1984 0.24 41.07 10.3 1.82 

07344486 Brushy Ck at 
Scroggins, TX 23 1978 - 2003 2.89 45.78 11.2 4.53 

07335000 Clear Boggy Creek 
near Caney, OK 720 1988 - 2009 0.92 40.13 8.81 3.15 

08139500 Deep Ck nr 
Mercury, TX 44 1960 - 1972 0.88 25.49 1.39 0.19 

07315200 E Fk Little Wichita 
Rv nr Henrietta, TX 178 1964 - 2009 0.99 31.64 2.21 0.10 

08109800 E Yegua Ck nr 
Dime Box, TX 244 1963 - 2009 6.57 37.43 3.72 0.98 

08094500 Green Ck nr 
Alexander, TX 46 1960 - 1972 0.86 30.32 1.73 0.49 

08058500 Honey Ck nr 
McKinney, TX 39 1960 - 1972 0.26 36.75 7.12 3.14 

08103800 Lampasas Rv nr 
Kempner, TX 818 1963 - 2009 1.16 30.66 2.80 1.36 

08158700 Onion Ck nr 
Driftwood, TX 124 1980 - 2009 1.48 35.37 5.80 4.02 

08172400 Plum Ck at 
Lockhart, TX 112 1960 - 2009 0.32 35.45 5.89 1.79 
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B3. Summary 
 
The GMA8 model site was characterized for the GAM model through an evaluation of 
soil permeability and gaged watersheds within the model boundaries. The STATSGO soil 
database, the NRCS Web Soil Survey, and a review of the literature describing 
permeability and infiltration capacity of individual aquifers within the GMA8 model 
boundaries were used to assemble and validate a raster layer to represent soil 
permeability for the GWr model. USGS stream gages were selected to represent 
discharge conditions across GMA8 based on data continuity, watershed disturbance, 
location, and size criteria. Data from the selected representative watersheds was collected 
from USGS stream gages and mated with Perm, Ppt, and ET0 data in preparation for 
model Q calibration. 
 
Data provided with this report pertaining to Perm: 

• Permeability rate (in/hr) raster both in the model parameters geodatabase and as 
an individual raster. 

 
Data provided with this report pertaining to Q: 

• Shapefiles of calibration watersheds for USGS gage locations and model 
parameters geodatabase. 

• Shapefiles of calibration watershed boundaries and model parameters 
geodatabase. 

• Calibration watershed gage data including quarterly and annual Q, Ppt, and ET0 in 
an Excel spreadsheet, Individual Watershed Analysis. 

• Q estimates for 1960 – 2009 provided both as a model variable geodatabase and 
as individual rasters. 
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C. Calibrating Rinfil: Spatial Extrapolation of Discharge 
 
In Sections A and B we described the acquisition of the data for, and preparation of, Rinfil. 
The concept of the variable Rinfil parameter was developed to represent the total 
precipitation (Ppt) accepted by the soil and available to evapotranspiration over the year 
(ETa) in order to model groundwater recharge (GWr) at the coarse temporal and spatial 
resolution of the groundwater availability model (annual time-steps and square mile grid 
cells). The driving variable for the hydrologic processes governing GWr over the project 
region is precipitation (Ppt). The amount of Ppt that enters the soil system, infiltrated 
rainfall (Rinfil) is the critical parameter to estimate. This simplified water balance reduces 
the recharge system to three variables that explain GWr (Equation C1).  
 
 GWr = Rinfil - ETa      Equation C1 
 
In this section we will present the assembly of a precipitation-driven spatial model of 
Rinfil. Modeled Q provides the framework for estimating Rinfil, the residual of Ppt minus 
surface water loss (Equation C2). Q was chosen to represent surface water loss and was 
analyzed at the individual watershed scale to capture the Q-Ppt relationship. After 
defining Q-Ppt relationships for representative watersheds, we used the physical 
relationships between Q, Perm and climate (represented as the 50-year average Ppt/ET0 
relationship) to spatially extrapolate Q estimates across the GMA8 region. The following 
sections detail the procedure used to model Rinfil. 
 
 Rinfil = Ppt – Surface Water Loss    Equation C2 
  

C1. Estimating Rinifl—What Constitutes “Surface Water” Loss 
 
Two estimates of surface water drainage were evaluated when calibrating Rinfil as a 
means of sensitivity testing for the ultimate GWr results: measured total discharge (Q) 
and runoff (RO) estimated from Q (note “tested and accepted” for Equations C3 and C4). 
Q was collected directly from the USGS NWIS in daily discharge measurements. Base 
flow (BF) was estimated from daily discharge data using the USGS streamflow 
partitioning program PART (USGS, 2011). After assembling Q data and estimating BF, 
RO was calculated as the residual of Q minus BF (Equation C5).  
  
 Rinfil = Ppt – RO  - Tested Formulation -   Equation C3 
 

Rinfil = Ppt – Q   - Accepted Formulation -   Equation C4 
 
 RO = Q - BF        Equation C5 
 
The ultimate intent for calibration of Rinfil was to estimate the fraction of precipitation 
that infiltrates the soil and is available to recharge the aquifers across the project area. 
Two choices were examined for calculation of Rinfil, represented by Equation C3 and C4. 
These formulations treat Rinfil as the residual of RO from Ppt (RO being the amount 
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rejected by the landscape from storms), or Q, total discharge (including base flow). These 
methods were examined using calibration data from gaged watersheds. As indicated in 
these equations, the first representation was tested and rejected—the representation for 
Rinfil used in the GWr model was calculated as the residual of Ppt and Q.  
 
BF may be used as an estimate of minimum aquifer recharge given the assumption that 
BF is discharge from the aquifer. This combines an additional assumption that the portion 
of water contributing to bank storage cycles through the system: this portion infiltrates 
the alluvium during storms and exfiltrates afterward. While this may be true, it is not 
relevant at the temporal and spatial scale of the GWr model. Water that temporarily 
enters and exits the shallow aquifer falls below the detection limit of the GWr model that 
provides only coarse outputs in square miles across annual time steps. While the choice 
for calculation of Rinfil using Q is obvious (Equation C4), use of RO in Equation C3 for 
the calculation was examined for comparison.  
 
RO was calculated as a residual from Q determined by the PART model that partitions Q 
into BF and RO. These calculations are particularly sensitive to BF and how it is 
determined. PART sensitivity to storm events is apparent in the sharp increases and 
decreases present in annual BF estimates (Figure C1). “Flashy” BF predictions may 
introduce error to GWr model estimates. Extremely high BF predictions due to inflation 
of BF during storm events and lagging drainage of bank storage are suspected to lead to 
low RO estimates in representative watersheds (for example, Figure C2). Underestimates 
of surface water loss induced by quantifying the loss with biased RO lead to low 
estimates of drainage from the system. Consequently, low estimates of drainage from the 
system unrealistically exaggerate residual GWr predictions in comparison to estimates of 
recharge available in the literature.  
 

 
 
 
Figure C1. In this example 
from Lampasas River 
watershed, base flow 
estimates produced by 
USGS PART surge with 
precipitation increase, and 
do not correctly represent 
the steady minimum 
groundwater discharge 
component needed to 
calibrate a RO-based GWr 
model. 
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Figure C2. 
Many of the 
representative 
watersheds 
selected for 
RO calibration 
have high 
long-term 
average BF 
estimates 
which bias 
model 
estimates of 
GWr. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
From the examination provided by applying PART, the use of BF and RO were rejected 
for calculations of GWr. For application of a coarse recharge model (years, miles), no 
further discrimination of the parameters for water balance beyond simple discharge from 
the watershed (Q) was made. Q was chosen because it is the water that is exported out as 
measurable flow.  
 

C2. Codifying Q Relationships 
 
The procedure used to model Rinfil utilized components that vary spatially (i.e. Ppt, ET0, 
and Perm). All calculations were made as annual time steps because this was a 
simplifying step desired by the TWDB Groundwater Resources Division. The numbered 
overview below is described in greater detail within this and the following sections. 
 

(1) As a first step, the infiltration within discrete watersheds was quantified by 
modeling the Q drained from the Ppt received. This was determined by regressing 
annual calculated Q against annual Ppt.  

 
(2) The resulting Q-Ppt relationships were power functions that did not allow 

extrapolation across the landscape because the power functions were “touchy”, 
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i.e., yielding values that quickly scaled out of the expected bounds for Rinfil and 
that were not coherent across nearby watershed boundaries. What was needed was 
adjustment of the Q-Ppt to follow a functionally linear relationship. 

 
(3)  Measured Ppt was scaled to reflect climatic variables that affect the amount of 

water available for Rinfil (i.e. scaling for the linked effects ET0 that determine the 
disposition of Ppt to determine the residual Q in any annual period). This 
linearization was implemented by dividing Ppt by ET0 and then using this 
dynamic variable to drive Q predictions for the Rinfil relationship—the resulting 
relationship between Q and the Ppt/ET0 ratio was functionally linear. Ppt/ET0 was 
chosen as the model input for Q calculations.  

 
(4) After linearizing Q by Ppt/ET0 for each watershed, a linear regression was fit 

through the full Q record for individual watersheds. The slopes of the individual 
watershed Q regressions encoded the Q behavior—each controlled by 
permeability and spatial climate trends. These codified regression slopes were 
used to model Q for GMA8 using permeability and the spatial climate trends 
encapsulated in the 50-year average Ppt/ET0 for each model pixel. Such 
regressions varied from the SW (hotter, dryer) to the NE (wetter, cooler). The 
slope of the linear regression could then be used to spatially extrapolate Q 
behavior anywhere within the GMA8 region based on permeability and climate 
trends using multiple linear regressions (described in section C3). 

 

C2.1. Linearization of Q Data 
 
Q prediction for the project area was calibrated spatially using individual watershed 
discharge analyses. For these analyses, gage location, watershed boundaries, Q and BF 
records, and zonal averages of annual Ppt and watershed permeability (Perm) were 
compiled into an Excel spreadsheet as described in Section B2.  
 
To analyze individual watershed data, Q was plotted as a parameter dependent upon 
annual precipitation for regression to a best fit curve. The data clearly followed a non-
linear trend (Figure C3).  
 
To constrain problems introduced by modeling non-linear equations, the data were 
transformed by employing an inherent climatic relationship between precipitation and 
ET0. Precipitation and ET0 vary inversely—as precipitation increases, humidity increases 
and ET0 decreases. Conversely as precipitation decreases, the air dries and ET0 increases. 
When precipitation is high in relation to ET0, the ratio is stretched towards unity; when 
precipitation is low the ratio of the stretch is much smaller (Figure C4). The new plot of 
discharge versus the precipitation-ET0 effectively linearized the precipitation-discharge 
relationship (Figures C3, lower graph).   
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A 

B

 
C

Figure C3. Example transformation of non-
linear Q-Ppt relationship using the dynamic 
variable ET0. (A) Example watershed location 
and boundary. (B) Annual watershed Q is 
related to Ppt by a non-linear function. (C) 
Due to the inherent difficulty in modeling 
non-linear equations, a transformation using 
ET0 was used to functionally linearize the Q-
Ppt relationship as Q vs. Ppt/ET0. This 
transformation is depicted in figure C4. 
 

 
Figure C4. The logical relationship between Ppt and ET0 examined using synthetic data. As 
Ppt increases, humidity increases as well, therefore decreasing ET0 (left). The ratio of 
these two variables imposes a rightward stretching of the independent (x) variable and 
quasi linearization of the relationship between Q and the independent variable. Right: 
synthetic Ppt, ET0, and Q developed from calibration data and simplified to illustrate the 
Ppt/ET0 transformation—while the data still exhibit a non-linear trend, the data can be 
adequately described by a linear regression. 
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C2.2. Q Relationships Defined by Ppt/ET0 

 
The first step in calibrating Q for the model was to analyze the Q versus Ppt/ET0 
relationship for each representative watershed. The annual sums of Q measurements were 
regressed against the annual Ppt/ET0 for each watershed (Figure C5). The regression fit 
for each of the watersheds captured the long-term (LT) trends in Q (Equation C6). Test 
analysis of the Q regression results found that the Perm-Q relationships were preserved in 
the slope of the Q versus Ppt/ET0 regression.  
 

Long-Term Watershed Q = aQLT + bQLT * (Ppt/ET0LT)   Equation C6 
 
The differential Q slopes developed during regression analysis reflected differences in the 
underlying permeability—a highly permeable watershed, for example, resulted in a large 
amount of infiltration and a shallow Q slope while a relatively impermeable watershed 
rejected nearly all Ppt and resulted in a steep Q slope (Figure C6). Given the inherent Q-
Perm relationship in the long-term Q regression slope, systematic Q behavior was used to 
link individual watershed analyses with the Perm dataset. The variability of the driving 
variable Ppt/ET0 is clearly spatially controlled in the 50-year average and was also used 
in the spatial calibration of Q (Figure C7). The regression equation for each watershed 
was combined with the average Perm and average annual Ppt/ET0 over that watershed to 
encapsulate the relationships between these variables for a project-wide regression 
analysis. 

 

 
Figure C5. Example of gaged 
discharge, long term Q regression 
(Equation C4). The relationship of 
gaged Q to Ppt was linearized using 
the Ppt/ET0 transformation and the 
regression equation was recorded for 
each representative watershed.  

 
 

Figure C6 Perm-controlled and 
Ppt/ET0-driven Q demonstrates 
the relationship needed to model 
Q. A steep slope (dashed line) 
indicates that more incoming 
rainfall goes to Q than a gentle 
slope—a condition that occurs 
with low Perm soils. The solid line 
is a soil with high Perm that 
produces less Q, hence, boosting 
Rinfil, the residual of Ppt minus Q. 
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Figure C7. The 50-year average Ppt/ET0 ratio illustrates the gradient in climatic conditions 
across the project area from the NE to the SW that varies by a factor of 3.4 across the 
project region. 
 

C3. Multiple Linear Regression of Q 
 
After analyzing the data for each watershed individually, we compared Q data for 
individual watersheds to spatially-controlled variables in order to extrapolate Q across the 
project. We tested two techniques for relating Q data to the spatial variables Perm and 
Ppt/ET0: (A) lumping all annual Q, ET0, and Ppt as well as spatial Perm data into a 
multiple regression analysis, and (B) using a representative set of long-term average 
values from each watershed to relate individual watershed data to the project area. In 
preparation for the (B) technique, the regression equation for each watershed was 
combined with the average Perm and average annual Ppt/ET0 over each watershed to 
encapsulate the relationships between these variables for a project-wide regression 
analysis.  
 
Initially, we tried grouping annual values of Q, Ppt/ET0, and Perm from all watersheds 
for a multiple regression analysis. The resulting regression relationships were weak due 
to the high variability in timing of Ppt, ET0, and Q in the annual data. Next, to enhance 
the signal in the relationship through removal of the annual variability, we reduced the Q 
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A

B C

versus Ppt/ET0 relationship for each watershed using Equation C6 and the 50-year 
averages. The signal for Q versus Ppt/ET0 was encoded by the slope, bQLT, of the 
regression relationship for each watershed—an example line is portrayed in yellow in 
Figure C5. Thus encoded by watershed, the slope bQLT was analyzed through multiple 
linear regression using bQLT as the dependent variable predicted by two independent 
variables, Perm and average Ppt/ET0.  
 

C3.1 Multiple Regression Analysis of Q for Unique Discharge Regions 
 
Though representative of broad regions, the Q from all watersheds could not be well 
explained by one regression model so spatial subsets were evaluated. To consider spatial 
groupings, watersheds were divided based on their location within the EPA Level Two 
Ecoregions (EPA, accessed 2011). Unique conditions of Q across the model were 
described by two spatial groups: the South Central Semi-Arid Prairies (SCSAP) in the 
east and northeast of the project region and the Southeastern USA Plains (SEP) for the 
remaining majority of the project region excepting a sub-region of SCAP: Eastern Cross 
Timbers (Figure C8, A). The Eastern Cross Timbers sub-region lies within SCSAP, but 
the sub-region’s floristic and Perm characteristics made the region more similar, in terms 
of the Q model, to SEP (Figure C8, B and C). For the purpose of estimating Q, the 
Eastern Cross Timbers (ECT) region was grouped with SEP. Variability in watershed Q 
within each region was captured by a unique regression for each region. 
 

 
 
Figure C8. A) Two EPA ecoregions were 
used to spatially define unique Q 
conditions over the entire model area, with 
the exception of the ECT sub-region. B) 
There is more forested landcover within 
ECT than the surrounding SCSAP which are 
dominated by grassland and crops. C) The 
higher permeability soils of ECT stand out 
against the lower permeability soils of the 
SCSAP. ECT was grouped with the SEP for 
the analysis of watershed Q. 
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C3.2. Assembling the Q Regression 
 
In order to arrive at the equation to solve for Rinfil from Ppt and Q (Equation C4), the 
variable Q must first be defined. The dynamic relationship between Q, Ppt, ET0, and 
Perm was captured using multiple regression analysis. The equations to estimate Q 
parameters revealed by the regression models indicated dynamic changes in the unique 
conditions at each pixel for each model year. The dynamic Q parameters for each model 
year were then used to solve a simple linear regression to calculate annual Q. The 
following steps were followed for deriving the Q parameters for each model year. The Q 
parameters were then used to estimate Q based on annual Ppt/ET0. 
 
1) Watershed data were compiled in a table for each discharge region according to four 
variables: 
 

• Long-term discharge equation slope: bQLT. 
• Long-term discharge equation x-intercept: x-interceptQLT. 
• Long term average Ppt/ET0LT. 
• Average watershed Perm. 

 
2) Multiple linear regression analysis was performed for the dependent variable bQLT and 
independent variables Perm and Ppt/ET0LT for each discharge region. Regional 
coefficients, bclimate and bPerm, and constantb shown in Equation C7 were defined in this 
process. The constants in Table C1 and Equation C7 were used to estimate bQi for each 
model year “i”—this unique slope for each model year was used in equation C10 to solve 
for annual Q for year “i”. 
 
 Table C1. Q Multiple Regression Constants 

 Region 1 (SCSAP) Region 2 (SEP) 
bclimate 50.65   4.00 
bPerm - 3.41 - 1.50 
Constantb - 4.39 26.00 

 
bQi = ( bclimate * Ppti / ET0i ) + ( bPerm * Perm ) + Constantb  Equation C7 
 

 
3) Non-linear regression analysis was performed for the dependent variable x-
interceptQLT against Ppt/ET0LT for each discharge region. Regional coefficient bx-int and 
constantx shown in Equation C8 were defined. After both bQi and x-interceptQi were 
defined, aQi was calculated using Equation C9, the resulting intercept, aQi, was used in 
equation C10 to solve for annual Q. 
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Table C2. Q Regression Constants 
 Region 1 (SCSAP) Region 2 (SEP) 

bx-int 0.2983 0.2000 
Constantx 0.5974 0.5752 

 
x-interceptQi = bx-int * ln( Ppti / ET0i ) + Constantx  Equation C8 
 
aQi = - bQi * x-interceptQi     Equation C9 

 
4) All regional coefficients and constants were incorporated into the model script. 
Equations C7 through C9 were solved for each year “i,” and these solutions were then 
used to estimate annual discharge Qi with Equation C10.  
 

Qi = aQi + bQi * ( Ppt / ET0i )     Equation C10 
 
5) Dynamic adjustments to Q predictions over urbanized areas were applied as described 
in Section G: Modeling Urbanized Areas. 
 
6) The final estimate of Qi was capped at the annual precipitation using equation C11 and 
negative Q estimates were replaced with zeros using Equation C12.  
 

If Qi > Ppti, Qi = Ppti      Equation C11 
If Qi ≤ Ppti, Qi  

 
If Qi < 0, Qi = 0       Equation C12 
If Qi ≥ 0, Qi 

 
The predictions made using these equations trace the non-linear behavior observed in 
gaged Q (Figures C10 and C11). Predicted Q agrees well with gaged Q (Figure C9). 
 

 
 
 
 
Figure C9 Q predicted with the new multiple 
regression model agrees with Q measured 
at stream gages. The example shown is the 
Blue River drainage in the far north of the 
project region. 
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C3.3. Evaluation of Q through Confirmation for Each Region 
 
To verify the results of the multiple regression analysis, the technique was applied to 
individual watersheds from both the two model regions, SCSAP and the SEP. The Perm 
coefficient, climate coefficient, and constant developed for each region were used to 
model Q according to Perm and the annual Ppt/ET0 ratio for each year of a watershed’s Q 
record. Figure C10 illustrates the agreement between modeled and measured Q at stream 
gages for both discharge regions of the model. 
 
Figure C10. Q modeled using multiple-regression derived coefficients compared to gaged 
Q for each discharge region of the model. Left: Q predictions and measurements for a 
watershed in the SEP region. Right: Q predictions and measurements for a watershed in 
the SCSAP region. In both regions, predicted Q follows the trend observed in the original 
gaged data. 

 

C4. Summary  
 
To estimate the annual depth of infiltrated rainfall (Rinfil) for groundwater recharge (GWr) 
predictions, a technique was developed to estimate how much of the incoming 
precipitation (Ppt) was lost at the surface. Surface water loss was quantified as total 
gaged discharge (Q), which was analyzed at representative watersheds across GMA8. 
The relationship between Q and Ppt was simplified and linearized by scaling the driving 
variable Ppt with ET0. The slope of the linear relationship between Q and Ppt/ET0, bQ, 
provided a way to codify Q behavior spatially based on soil permeability (Perm) and 
climate variables (50-year Ppt/ET0 average). A multiple linear regression model was 
developed to predict Q based on the spatially-codified relationships for each of two 
model regions. The Q predictions resulting from the multiple linear regression analyses 
accurately modeled the Q observed in gaged data. 
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Data provided from the work in this section include: 

• Calibration watershed data including quarterly and annual Ppt, ET0, and gaged Q 
in an Excel spreadsheet, “Individual Watershed Analysis”. 

• Q estimates for 1960 – 2009 provided as a geodatabase and as individual rasters. 
• Rinfil estimates for 1960 – 2009 provided as a geodatabase and as individual 

rasters. 
• Unique Q regions boundaries defined in raster provided in a geodatabase of model 

parameters and as a separate raster. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

D. REMOTELY-SENSED DUAL COEFFICIENT (RDC) 
ET ESTIMATION FOR GMA8 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

NDVI* Wet: 8-21-2007  
8 21 200

NDVI* Dry: 8-05-2005  

MODIS satellite images 
processed to NDVI* that was 
used to estimate ETa. 
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D. Remotely-Sensed Dual Coefficient (RDC) ET Estimation for GMA8 
 
Groundwater recharge cannot be measured directly but must be inferred as a residual 
from rainfall after surface processes of discharge and evapotranspiration (ETa) have been 
subtracted. This section presents validation of calculations from the Remotely-Sensed 
Dual Coefficient (RDC) evapotranspiration estimation method developed by HydroBio. 
The technique was designed for use with Landsat Thematic Mapper 5 (TM5) and other 
moderate resolution (20-30 meter) Earth Observing Satellite (EOS) data. For application 
to the comparatively large GMA8 project area, synoptic scale satellite data from 
Moderate Resolution Imaging Spectroradiometer (MODIS) was applied.  
 
The methods used to estimate ETa in the GMA8 region relied upon an internally 
calibrated vegetation index that was chosen to scale plant activity. Through fitted 
mathematical relationships to represent broad classes of vegetation, described in Section 
F, this index enabled generation of spatial estimates of annual ETa for a dry year (2005) 
and a wet year (2007). The description of the calibration and validation analyses for ETa 
for three types of land cover—crops, woody vegetation and grassland vegetation, are 
presented in Appendix 2. Within the project area, woody vegetation is primarily forested 
while grassland vegetation is primarily savannah (dominated by grass but with shrubs and 
trees). 
 
The intent with the application of RDC calculations of ETa was intended to provide close 
estimates of the proportion of precipitation that was lost from the landscape. Inherent in 
this estimate were errors that were not measurable within RDC calibration and 
application. The intention for ETa estimation for the GMA8 project was to provide an 
estimate that was robust relationally, meaning that inherent errors in the ETa estimation 
are shared equally across the landscape. Such relational robustness enables the use of 
scaling for sensitivity analysis against other regional groundwater model components. 
For example, for cross checking regional groundwater models, ETa can be varied by 
decimal fractions up or down to enhance or retard GWr in the GWr model  
 

D1. Introduction to the RDC Method 
 
The RDC method uses estimates of actual ET for a crop “n” (ETan) scaled by reference 
ET (ET0) and canopy and soil factors for that crop over a given time interval. RDC 
employs an adaptation of the normalized difference vegetation index (NDVI) that was 
proven to be more accurate than the other published vegetation indices for an evaluation 
that used actual satellite data to predict known hydro-ecologic processes (Baugh and 
Groeneveld, 2006). This index, NDVI*, was employed in RDC to estimate ETa. The 
following series of papers were used as the basis for RDC: 
 

• Testing vegetation indices from EOS data that most accurately capture the 
hydrologic signal—NDVI*: (Baugh and Groeneveld, 2006). 
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• Testing methods to process EOS data to enhance the hydrologic signal in 
vegetation (NDVI*): (Groeneveld and Baugh, 2007) 

• Developing a method for EOS estimation of ETa using NDVI* in use by three 
western states and Bureau of Reclamation (Groeneveld et al., 2007). 

• Fitting ETa/groundwater-drawdown curves with the single-scene NDVI* method 
for a site with declining water table (Groeneveld, 2008). 

 
RDC is based upon a simple model used in agriculture, the dual coefficient method, used 
for scaling the ETa of crop as a function of reference ET (Allen et al., 1998). The dual 
coefficient method provides one-dimensional estimates of ETa (as depth at each location) 
and ETa for any crop “n” is often calibrated within temporal lookup table values 
(Equation D1). ETan, for any area occupied by a crop n, results from summation of 
multiple time steps (t) representing all n crop development through the season. 
Summation of ETan in any grid cell yields ETa (Equation D1). 
 
  ETatn =  Σ ( Kcb · ET0   +   Ke · ET0) tn    Equation D2 
 
 Where Kcb and Ke are lookup-table ET scaling factors that represent the canopy 
 (Kcb) and the lumped soil surface (Ke), and ET0 represents the grass reference 
 ET calculated by the ASCE Penman Monteith method (Allen, undated).  
 
The RDC method uses NDVI* as an estimator of Kcb with correlation statistics used to 
solve for Ke.  Ke can be a fitted as a constant or an equation to enhance NDVI* so that 
when multiplied by ET0, yields an unbiased estimator of measured ETa. The RDC 
approach was developed prior to the GMA8 project and so, was validated and further 
calibrated to yield ETa for application within GMA8. Data were acquired from the 
AmeriFlux network that measures, among other parameters, the input for ETa and ET0 
calculation for many sites across the United States (Heilman 2005 – 2006; Katul, 2002-
2005; Oechel, 2005 – 2006; Verma 2003 – 2006). 
 
For estimation of ETa in the study area, numerous EOS images were analyzed that were 
assembled as image stacks that formed a data cube—space as x and y, with the z 
dimension being NDVI* and with numerous geocorrected images incorporated to 
represent time wise snapshots stacked one over the other. The concept of a cube arises 
from the fact that the geoposition, determined by x and y dimensions remain in the 
position through dataset.  
 
Validation/calibration analyses for RDC to yield unbiased estimation of ETa in GMA8 
used measured ET data from the AmeriFlux network that were paired with Landsat TM5 
data. The large project area of the GMA8 GWr model required the use of relatively 
coarse resolution MODIS data. RDC was developed using Landsat TM data because the 
30m pixels enable comparison at the same approximate scale of the flux measurement 
locations (within a radius of about 3 - 4 pixels or 90 - 120 meters (98-131 yards). Rather 
than attempt calibration with MODIS, the finer resolution for TM data was used because 
precise spatial control was necessary for pairing AmeriFlux measured ETa with EOS data 
for deriving solutions to Equation D1. MODIS, with 231 meter pixels, was far too coarse. 
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On the other hand, Landsat TM data were judged unsuitable for ET estimation across the 
large project area because they are far too data rich, require about 9 images to cover the 
project region, would bog computations for one square mile grid system and have images 
acquired only at 16-day repeat intervals.  
 
The 16-day repeat interval of TM combined with a high potential for cloud cover over the 
project area was demonstrated to cause data skips through large critical periods that were 
unacceptable for project application. With its daily repeat images and coarser scale, 
MODIS was the best data platform for remote-sensing estimation of ETa across the 
project area. Use of MODIS to estimate ETa using relationships that were first calibrated 
with TM required that the MODIS data were made equivalent to Landsat TM.  
 

D2. Making MODIS NDVI Equivalent to Landsat TM5 NDVI 
 
RDC was calibrated using Landsat TM data. MODIS and Landsat TM do not have 
equivalent band sensitivities for red and near infrared bands used for assessing NDVI. 
NDVI* analysis was made so that raw NDVI from MODIS could be transformed to be 
equivalent to TM5. For calibration both a Landsat TM5 image (Path/Row 28/29) and a 
MODIS image (H9/V5) covering the Austin/Dallas region of Central Texas were chosen 
from the same day (10-01-2010). This snapshot was selected because the region of 
interest was clear of clouds and lacked haze and represented optimal conditions for 
remote sensing analysis.  
 
NDVI, normalized difference vegetation index, was calculated from the data provided by 
MODIS and Landsat TM. The relationship governing NDVI is presented in Equation D2.  
 
  NDVIi = (NIR – red) / (NIR + red)   Equation D2 
  
 Where i represents the ith pixel and red and NIR (near infrared) are broad bands 
 found on most EOS platforms.  
 
Though the nominal pixel dimension is 250 meter for MODIS, these data actually come 
as 231 meter pixels for the Texas region. MODIS data are delivered in reflectance while 
Landsat TM5 data require correction to reflectance using equations in Irish (undated) 
with the published gains and offsets for Landsat TM5. The TM5 data were rescaled to 
231 m using the cubic convolution algorithm in ENVI version 4.8. The paired 231 m 
pixels from the MODIS and the rescaled TM were then sub-sampled to the one pixel 
overlying the centroid of a 5 square kilometer grid as a means of limiting the number of 
samples. Sub-sampling enabled constraining the sample size to be sufficient for a robust 
statistical fit, while remaining manageable for curve fitting and outlier removal by 
creating a sample size of 899 paired values. The paired data were graphed and a 
preliminary relationship was fitted using linear regression.  
 
Every geocorrection naturally contains at least one-half pixel spatial uncertainty. For that 
reason, these paired data may contain bits of open water (zero NDVI) mixed into selected 
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pixels. This inclusion would tend to create scatter both above and below an expected line 
for comparison of the two EOS data sets. Such values can be highly influential on 
regression since they tend to lie at the extreme end of the data distribution. For this 
reason, the suite of 899 paired values were evaluated for outliers and 20 values were 
removed from the data cloud (2.2%) in order to provide a relationship of the highest 
precision (Figure D1).  
 
The analysis for processing MODIS to yield TM5-equivalent NDVI* was accomplished 
by first using GAP data (USGS, Accessed 2010) to define the location of large water 
bodies within the GMA8 region. Water body locations were used to screen out all pixels 
that contained water bodies since the reflectance from clear deep water (lacking 
significant algae or entrained sediments) is zero, or slightly negative; values that would 
skew the results. Additionally, when entrained particles or algae are present in water 
bodies, the backscattering of light that occurs is different in red and near infrared bands 
that are used to calculate NDVI (Groeneveld and Barz, 2010); this can greatly affect the 
results that are obtained. Each pixel is the functional average of the area within and the 
many of water-affected pixels would skew the distribution of NDVI values in the 
analysis. Clouds were also identified spectrally and then masked out of the images.  
 
An area between Austin and Dallas was chosen as the area for this investigation. NDVI 
was calculated for water- and cloud-masked pixel values. The collected masked NDVI 
values were displayed as cumulative distribution functions (CDFs) during the two years 
chosen for analysis. 
 
The resulting regression relationship in Figure D1 was used to yield MODIS NDVI 
values that are equivalent to Landsat TM5 values. Scatter in the data cloud of Figure D1 
is due to geopositional uncertainty inherent in these data plus spatial uncertainty due to 
the cubic convolution method for pairing data. Cubic convolution simply selects the 
centroid of a pixel when combining pixel values for scaling TM data to the size of a 
MODIS pixel. 
 
 

 
Figure D1. Graph of 
the data and the 
equation to yield 
MODIS NDVI that is 
equivalent to TM5 
NDVI. The calibrated 
equation transforms 
MODIS data to fit 
the one-to-one line 
(red) so that the TM-
derived calibration 
curves for ETa can 
be used with the 
MODIS data.  
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D3. Processing MODIS Images for Estimation of ET 
 
NDVI*, a derivative of NDVI, is a stretched version of NDVI that codes vegetation 
density from zero to one in scale against ET0 to run the RDC calculations of ETa. To 
calculate NDVI*, two values are needed, NDVI0 and NDVIS, that represent NDVI for 
vegetation cover at zero and at maximum expression, respectively (Equation D3). 
Calculation of NDVI* is necessary because even bare soils often present an NDVI 
response that is greater than one, often about 0.10, and this is further altered because 
atmospheric aerosols differentially scatter the red and NIR bands.  
 
  NDVI* = (NDVIi – NDVI0) / (NDVIS – NDVI0)   Equation D3 
 

Where NDVI0 is the value at zero vegetation cover and NDVIS is the value at  NDVI 
saturation, a theoretic peak vegetation canopy response.  

 
When choosing NDVI0 values for TM data, a number of methods can be used including 
regression of the lower limb of the NDVI CDF as in Baugh and Groeneveld (2006) and 
Groeneveld and Baugh (2007). Such methods work for TM5 data, because, at 30 meters, 
the pixels are small enough to statistically incorporate all or some bare ground, while the 
lowest limb of the curve represents Gaussian relationships for pixel mixes with water, 
parking lots, roadways and buildings. The regression predicts NDVI0 and cuts off the 
Gaussian portion of the distribution.  
 
To establish NDVI0 for MODIS pixels, at 231 meters, regression is not a reliable method 
and another method to select NDVI0 for a known target that was devoid of vegetation 
was used. This measured value of NDVI0 was then used for the entire MODIS scene. 
Because of the size of the MODIS pixels, the bare target was chosen carefully by first 
looking at low non-water values of NDVI. A portion of a quarry near Georgetown, north 
of Austin (Figure D2) was selected on the imagery and then confirmed by Google Earth. 
This location yielded three pixels that were centered within low NDVI values, thus 
avoiding mixed edge pixels and issues with geocorrection. Unresolved geopositional 
error generally incorporates about one half pixel of spatial uncertainty for any EOS data.  
 
Table D1 presents the extracted NDVI0 values for the pixels located in Figure D2. Two 
years worth of data were evaluated, 2005 and 2007; these years were chosen to represent 
record dry and wet years across the GMA8 region. A number of images were eliminated 
from these tables because of issues with clouds within the region of the target area. These 
data show little variability; hence, choosing the bare quarry values for NDVI0 was 
anticipated to work satisfactorily. The overall average values highlighted in these tables 
were used for images that were cloudy over the NDVI0 target area. Likewise, since the 
MODIS eight day cloud-free product potentially contains a mosaic spanning all eight 
days, the low variability of the quarry data ensures that very little error will be introduced 
into the analysis due to different dates for a multi-day mosaic of MODIS data. Also, since 
the “cloud free” product often isn’t cloud free, using the overall averages to compensate 
for missing quarry values introduced little additional error over that induced by the 
mosaic of different days within each eight day snapshot of MODIS.   
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The years 2005 and 2007 were chosen for evaluation of spatial (i.e., per pixel) ETa for 
recent record dry and wet years, respectively. All intermediate years within the 
precipitation record were interpolated within these two extremes. The MODIS scenes for 
2005 and 2007 were first processed to NDVI, and then converted to TM5 NDVI 
equivalency according to the relationship in Figure D1. For calculation of the TM5-
equivalent NDVI*, NDVI0 was chosen as the average quarry value in Tables D1, 
expressed as TM5 NDVI equivalent. The value of NDVIS used an established value of 
0.86, that has been found in other HydroBio work to yield a robust representation of 
NDVI* with a minimum of uncertainty when working with Landsat TM data. 
 
Table D1. Day of year and MODIS NDVIS values for the three pixels indicated in Figure D1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure D2. Location of target for bare areas to calibrate NDVI0 for MODIS. The small area 
indicated in the NDVI MODIS grayscale at right was used for extraction of the three pixels 
whose centroids fell within the area. 
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D4. Summary 
 
Data from MODIS imagery were used for estimation of ETa. From published data sets, 
Landsat TM data were used for calibration to estimate ETa. MODIS NDVI can be made 
equivalent to Landsat NDVI using a mathematical transformation. Transformation of 
MODIS enables the use of the ETa calibration methods. For estimation of ETa, a 
stretched version of NDVI is used, NDVI*. NDVI* requires the selection of a zero 
vegetation cover location on the MODIS for its calculation. Calibration targets, bare areas 
devoid of vegetation, were chosen to enable calculation of NDVI* from MODIS data. To 
model the range of ETa observed in GMA8, record wet (2007) and dry (2005) years were 
chosen to spatially represent the endpoints of the spectrum of ETa across the varying 
climate conditions of GMA8. 
 
Data provided from the work in this section include: 

• ETa estimates for 1960 – 2009 provided as a geodatabase and as individual 
rasters. 

• ETa slope and intercept rasters provided as model parameters in a geodatabase 
and as individual rasters. 

• MODIS raw and intermediate calibration data.  
• MODIS-derived quarterly NDVI* for 2005 and 2007. 
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E. RDC Parameters—Validation and Calibration 
 
Section D provided an overview of ETa calculated by the RDC method. This section 
describes the culmination of techniques and data used to calibrate RDC parameters for 
calculating ETa across GMA8 region before they were applied to MODIS data. 
 
The RDC method was originally developed using data sets recorded in drier climates than 
represented by the GMA8 region. For this reason, the RDC analysis for GMA8 was 
conducted in two parts: first, validation to ensure that the approach was correct for the 
GMA8 climate and then calibration, to ensure that the relationships were correct for the 
range of climatic conditions and vegetation in GMA8 region. The study sites chosen for 
the validation/calibration effort contained a variety of climates and vegetation. Inherent in 
this wide range of subject sites was the intent to determine the robustness of the 
relationships to estimate ETa correctly across the highly variable climate and vegetation 
of the region.  
 
Landsat TM images were used to estimate ETa and were then calibrated to ETa measured 
at flux towers. This approach correctly matched the scale of ETa flux (across about 100 - 
200 meters) with the scale of multiple TM pixels. The relationships developed from these 
analyses were later applied to the MODIS data for estimation of ETa over the GMA8 
region. 
 
For adaptation to use with MODIS, an unbiased estimator of Kcb (defined in Equation 
E1) was chosen as the product of NDVI* derived per pixel and ET0 derived spatially 
according to point-wise measurements and extrapolated geostatistically (Groeneveld, 
2008). Ke, and any unresolved error from the Kcb estimate, were then solved by fitting 
appropriate transforms to yield total ETa estimates equivalent to the measured ETa. The 
transformation to estimate the Ke component was fitted for three broad cover types. 
 
  ETatn =  Σ ( Kcb · ET0   +   Ke · ET0) tn    Equation E3 
 
 Where Kcb and Ke are lookup-table ET scaling factors that represent the canopy 
 (Kcb) and the lumped soil surface (Ke), and ET0 represents the grass reference 
 ET calculated by the ASCE Penman Monteith method (Allen, undated).  
 
ETa for Texas vegetation fitted within three natural cover types: (1) woody perennial 
vegetation, such as forests and shrublands, (2) non-woody perennial vegetation such as 
grasslands and savannahs, and (3) cultivated crops, both irrigated and non-irrigated. Each 
of these classes was applied to the MODIS NDVI* estimate that had first been 
transformed to TM5 equivalency as described in Section D.    
 
Within the GMA8 project area, in addition to the three major ETa classes, there are urban 
and water bodies that were not calibrated separately because no specific data were 
available for these cover types. ETa for urban areas was chosen, a 50:50 combination of 
woody and non-woody classes because urban landscaping in Texas generally contains a 
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combination of trees, shrubs and lawn. A set factor was used to estimate evaporation 
from water bodies. 
 

E.1 Site Descriptions and Analysis Procedures 
 
Validation and calibration used measured ETa data. A series of twelve ET Flux towers in 
five locations were used for the analysis that covered various vegetation and crop types 
(Figure E1).  The towers were located in highly variable climatic and vegetation regions 
across the United States, allowing for a robust analysis and calibration of RDC through a 
range of climate zones.  

Figure E1. Google Earth image showing AmeriFlux locations used for RDC analysis. 
 
The AmeriFlux network, established in 1996, is a group of 120 eddy covariance towers 
that monitor long-term variations of carbon dioxide, water vapor and energy exchange 
from various ecosystems in the western hemisphere (AmeriFlux, 2010). AmeriFlux plays 
a key role in the quantification and comprehension of the processes that regulate and 
affect variations in water and carbon fluxes. Data collected from these research sites are 
combined into consistent, quality-assured datasets by the Oak Ridge National Laboratory, 
Tennessee and are available at <http://public.ornl.gov/ameriflux>. 
 
To accurately compare ET Flux measurements to the RDC method, weighted pixel grids 
were created around each tower (Figure E2). This approach can be shown to reduce error 

http://public.ornl.gov/ameriflux


 E4

in calculating ETa induced by air flow toward the flux tower location across radii with 
variable cover. Data were analyzed graphically as seven-day averages of measured daily 
ET flux centered on the day of the satellite overpass. Daily average ASCE Penman 
Monteith ET0 was calculated with the RefET software (Allen, undated) for each day 
within the seven day period at each site (the date of the overpass, plus and minus 3 days). 
Ground-truth ETa were then compared to the product of the spatially-weighted NDVI* 
measured during the overpass and the coincidental seven-day average ET0. This product 
was compared to the average ETa for the seven days of the paired RDC and flux data. 
The entire analysis consisted of 34 site/year combinations with 214 paired, seven-day 
ETa points developed from a total of 87 images. The sites, location, rainfall and crops for 
the individual towers are shown in Table E1. 

 
 
 
 
 
Figure E2. Grid and weighting factors used for 
comparison of NDVI* to measured ETa. 
Rectangular grids were used where winds were 
strongly north-south; portions of the rectangle 
extending one pixel row above and below this 
square grid were weighted as 1. 
 
 
 
 
 

 
The workflow for the RDC-to-groundtruth comparison for each site was: 

1. Download and organize the AmeriFlux ETa data. 
2. Search for and download cloud-free Landsat TM5 scenes corresponding to the 

flux tower site and its period of operation. 
3. Calculate reflectance for the Landsat TM5 data by equations in Irish (undated). 
4. Calculate NDVI according to Equation D2. 
5. Calculate NDVI* according to Equation D3 following methods presented in 

Groeneveld and Baugh (2007). 
6. Plot the flux tower site on the imagery in a geographic information system. 
7. Plot the pixel locations as a grid to provide a weighting system for the NDVI* 

values (Figure E2). 
8. Adjust the grid for prevailing wind, if warranted. 
9. Extract NDVI* from cells in the weighted grid and calculate weighted NDVI*. 
10. Download weather data from the flux tower and calculate ASCE Penman 

Monteith ET0 using RefET (Allen, undated). 
11. Plot the first-order ETa estimates (ET0 • NDVI*) against measured ETa. 
12. Fit a transform so that the estimated ETa data becomes a competent predictor of 

measured ETa by class. 
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Table E1. Sites used for calibration of RDC for use with MODIS.  
 
Location 
Name State Latitude Longitude Years 

Average 
Annual 
Rainfall (in) 

Vegetation 

Freeman 
Ranch TX 29.940N -97.990W 2005-2006 34-36 Woodland 

Freeman 
Ranch TX 29.9300N -98.0100W 2005-2006 34-36 Grassland 

Ponca OK 36.7667N -97.1333W 1998-1999 36-40 Winter Wheat 

Mead Site 1 NE 41.1651N -96.4766W 2003-2006 28-30 Maize 

Mead Site 2 NE 41.1649N -96.4701W 2003-2006 28-30 Maize/  
Soybeans 

Mead Site 3 NE 41.1797N -96.4396W 2003-2006 28-30 Maize/  
Soybeans 

Duke Open 
Field NC 35.9712N -79.0934W 2005-2006 44-46 Grassland 

Duke 
Hardwood NC 35.9736N -79.1004W 2002-2005 44-46 Mature 

Oak/Hickory 

Duke Pine 
Forest NC 35.9782N -79.0942W 2002-2005 44-46 Loblolly Pines 

Sky Oaks 
New CA 33.3844N -116.6403W 2005-2006 15-20 Chaparral 

Sky Oaks 
Young CA 33.3772N 116.6227W 2005-2006 15-20 Chaparral 

Sky Oaks 
Old CA 33.3739N -116.6229W 2005-2006 15-20 Chaparral 

 

E.2 ETa by Vegetation Class 
 
All classes of ETa, except open water, rise and fall dynamically with annual fluctuations 
in two controlling parameters: ET0, the driving force for evaporation, and NDVI*, a 
measure of vegetation vigor and water use. Examination of the first-order ETa curves for 
the individual flux sites indicated three natural groupings: (1) forested: vegetation 
dominated by woody species that shade the ground; (2) grassland: vegetation dominated 
by grasses, natural meadow or pasture (that may include sparse trees or shrubs—
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savanna); and (3) crops. To apply RDC to develop ETa estimates, these classes were 
delineated spatially using USGS GAP data (described in section F).  
 
The calibration analysis of the flux data was approached in three steps: (1) plotting the 
paired data for first-order RDC ETa estimates against the ground-truth measured ETa for 
each class, (2) calculating a linear first-order fit; and then (3) fitting a transform (if 
necessary) to correct the estimate so that the RDC-estimated ETa provided an unbiased 
predictor of the measured ETa. The simplified math for these steps is shown in Equations 
E2 and E3. Unlike the traditional dual-coefficient approach for estimation of ET 
expressed in Equation E1, this is a new approach that accommodates the effects of soil 
evaporation to now provide a new K from the function f(K) and an important 
improvement over the concept of an additive estimate for  Ke • ET0  that remains a static 
number or set tabular distribution through the entire growth cycle. This dynamic fitted 
variable was designated f(K); it is the correction for the lumped influences that cause the 
first-order RDC estimate of ETa to diverge from the measured ETa. 
                    ^ 

First-order estimate:    ETa  = ET0 • NDVI*    Equation E2 
 

Where ^ designates estimate, and NDVI* operates as a surrogate for Kcb for dual 
coefficient estimation of ETa. 

                      ^      
Transformed estimate:  ETa = f[NDVI*] * ET0   Equation E3       

 
Where f(NDVI*) is the fitted transformation of NDVI* that includes the effects of Ke 
whose product with ET0 yields ETa (constituting a dynamic K factor). 

 
The term “unbiased” is important for estimating ETa because of the natural variability 
that exists in the flux measurements and in the RDC estimates. Estimates of ETa that are 
not systematically either over or under the ground truth rates are unbiased although they 
contain scatter from estimation of ET0, calculation of NDVI*, and a suite of other issues 
that cause error in the actual flux measurement that constitute the ground truth for 
calibrating RDC. Because the physics, temporal variability, and spatial variability 
governing ET are highly complex—even the most careful measurements produce 
significant scatter. Although scatter must exist in these data due to the very nature of ETa 
and its measurement, this method approximates ETa in such a manner that the annual 
average of multiple and unbiased data points will define an accurate annual estimate of 
ETa.  
 
The linear transformation for the suite of first-order estimates provided a lumped 
parameter correction to arrive at total ETa losses from the system, including canopy 
interception losses and soil surface evaporation. Examination of the distribution for the 
RDC-estimated and flux-measured ETa permits physically-based interpretation. It is 
evident that the character of the transformation is dominated by soil-surface evaporation 
because such transformation is necessary in such short-statured cover such as both 
cultivated crops and grassland classes, but is not necessary within forested vegetation that 
is self shading, hence, apparently greatly constraining soil surface evaporation. In some 
ways the transformation functions work as fitted Ke values, but they are more dynamic 
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than the additive way a Ke is generally used within the dual coefficient method. This is 
because the f(K) replacing Ke within this application is multiplicative and can vary with 
the magnitude of NDVI*. 
 
The remaining two ET class types require separate estimation techniques. ETa for urban 
vegetation is estimated simply as 0.5 grassland plus 0.5 forested rates. Evaporation from 
open water was estimated using the relationship from Allen et al. (1998) as 1.05 • ET0. 
 

E.2.1 Woody Vegetation—the Forested ETa Class 
 
Vegetation dominated by trees and shrubs is a complex category for estimation of ET 
because it includes sites that vary from hydric to mesic conditions within the project area. 
In comparison to crops, which have controlled canopy architecture and growth that 
follows predicted stages, woody vegetation can be found in virtually any stage. To 
provide a wide range of climatic conditions and vegetation, sites were chosen in shrub-
dominated California chaparral, in woodland in Central Texas, and in an experimental 
forest run by Duke University in North Carolina. Together, these sites constituted 12 
site/year combinations (Table E2) representing 74 separate data points. 
 
Table E2. Sites, dominant vegetation types, general locations, and number of years of 
operation for each site dominated by woody plants—the Forested ET class. 

 
The locations evaluated for this ET class include California chaparral, specifically 
because this vegetation type contains sclerophyllous evergreen species that are 
characterized by drought hardy woody plants that have persistent leaves with thick waxy 
coatings, leaves that are retained through the year and often for multiple years. The 
GMA8 region contains such vegetation in the form of forests of live oak. 
 
The forest sites in North Carolina were included for several reasons, the first being that 
the deciduous and pine forests of the far northeast portions of the project area have many 
of the same species and characteristics as those in North Carolina. Another reason was to 
test whether pine forests have significantly different water use than hardwood forests 
when judged by their level of NDVI*. This is important because the project area contains 
intermixes of both hardwood forests and pine forests in the northeast.  
 
The Freeman Ranch data provided the only woodland data available within the study 
area, so this site was included. The location of the representative forested ET class site, 
however, was nearly immaterial for the RDC method. The input ET0 is determined by 
local climatic inputs and adjusts estimates of ETa to accurately represent any location of 
interest for RDC estimates for a given class. 



 E8

 
All first-order data points for woody vegetation were collected together in Figure E3. The 
first-order estimates fit well with the measured values; no separate calculation of Ke was 
necessary for estimation of the ETa for vegetation dominated by woody species.  
 

 
 
Figure E3. All first-order 
estimates of ETa estimated 
by RDC plotted against 
their paired flux-tower 
measured values. The first-
order estimate is a 
competent and unbiased 
estimator of ETa without 
transformation.  
 
 
 
 
 
 
 

 
 

E.2.2 Herbaceous Vegetation—the Grassland ET Class 
 
The Grassland class is herbaceous dominated; non-grass herbaceous species are a 
significant component of the class. Savanna vegetation is included in this class because 
even though trees may be present within savanna cover, the grass component dominates. 
For example, Sky Oaks Old is included within the Grassland class, even though it is 
within California chaparral—it is categorized as savanna and fits within the grassland 
data and its transform. The data for the grassy sites totaled 10 site/year combinations and 
62 separate points.  
 
Table E3. Sites, vegetation cover and number of years chosen for evaluating ETa for 
grasslands. 

Winter wheat was included in the Grassland class even though it is a cultivated crop. Its 
water use behaved more like grasses than crops and the transformation for grasses 
worked reasonably well for winter wheat, as can be seen in Figure E4. Some of the 
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values, however, were elevated slightly above the 1:1 line. Because only one winter 
wheat site was evaluated, winter wheat will be dealt with in the Crop ET estimation class 
because of (1) the uncertainty due to data limitations—only one winter wheat site was 
available, (2) the areas planted as winter wheat change each year, thereby requiring 
classification for each year of interest, (3) specific cropping data is not available for most 
years of interest from the USDA (that are provided in a product known as the Cropland 
Data Layer), (4) winter wheat is not distinguished from other crops within the GAP data 
that is the basis for locating the classes for estimating ETa, and finally, (5) minimal error 
would accrue due to this decision. 

 
 
 
 
 
Figure E4. Transformed 
first-order estimates of ETa 
for Grassland sites plotted 
against their paired flux-
tower measured values.  
The transformation was  
Kc = (1.3 • NDVI*). 
 
 
 
 
 
 
 
 
 

E.2.3 Crops ET Class 
 
This class consists of cultivated crops and, for application to the GMA8 project area, 
included winter wheat that was analyzed with Grassland as described above. The first-
order estimates of the two crops that were evaluated, maize and soy, can be fit with a 
single transformation despite large differences in physiology, physiognomy, taxonomy, 
and growth pattern. Thus, for purposes of estimating ETa, the crop relationship that was 
developed from the flux data was used for all crops. This relationship is extremely robust 
because the maize and soy grown on Mead Sites 1 and 2 received supplemental 
irrigation, while Site 3 was entirely rain-fed: all sites fit on the same relationship. 
 
Table E4.  Sites, vegetation cover and number of years chosen for evaluating crop ETa. 
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Even with large differences in crops and treatment, data from these three sites fit well 
together within one graph and were calibrated with a single transformation (Figure E5). 
These crop data were acquired in Mead Nebraska that has summertime humidity and 
temperatures like the GMA8 region and include 12 site/year combinations and include 78 
data points.  

 
 
 
Figure E5. Transformed 
first-order estimates of ETa 
for crops, maize and soy, 
plotted against their paired 
flux-tower measured 
values. The three symbols 
represent three different 
flux towers. The crop 
transformation was:  
Kc = [0.3 + (0.765 • NDVI*)]. 
 
 
 
 
 
 
 
 
 

 
 

E3. Summary 
 
ETa was calculated for vegetation by MODIS Pixel using the RDC estimation that 
employed ET0, NDVI* and fitted functions by vegetation cover type. Three cover types 
were chosen through calibration to typify the vegetation within GMA8, grassland, 
woodland and cropland. For estimation of ETa using the spatially correct vegetation 
cover type relationships, GAP data were then consulted to estimate the vegetation across 
the GMA8 region as described in Section F. 
 
 
Data provided from the work in this section include: 

• ETa estimates for 1960 – 2009 provided as a geodatabase and as individual 
rasters. 

• ETa slope and intercept rasters provided as model parameters in a geodatabase 
and as individual rasters. 

• MODIS raw and intermediate calibration data.  
• MODIS-derived quarterly NDVI* for 2005 and 2007. 
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F. Application of ETa Estimation  
 
Because of scale and ease, MODIS 8-day cloud free products were chosen as the basis for 
ETa estimation. Given that MODIS was the remotely sensed data on which to base ETa 
estimates, calibration for variable conditions required selection of recent years. MODIS 
Terra which was used for this study was launched in December, 1999. The method for 
calibration was to choose the wettest and driest years during the MODIS record to set end 
members for expected ETa.  
 
This section calibrates ETa for precipitation. Sections D and E described the method that 
was used for estimating ET that was developed using Landsat TM5 data, calibration for 
MODIS NDVI to yield Landsat TM5-equivalent NDVI, and calibration for NDVIo used 
to derive NDVI* from the MODIS data. This section describes the application of the 
remotely sensed dual-coefficient (RDC) ETa estimation techniques within GMA8 to 
construct a spatially accurate precipitation-driven model. 
 
Eight steps are summarized below that were required for development of the relationships 
that were needed to model ET. Steps 1 through 3 were calibration steps that used data 
subsets as described in Sections A, D and E. Steps 4 through 7 were conducted within the 
GMA8 Groundwater Availability Model (GAM) grid cells. The final step translated the 
newly developed ETa prediction into raster formats appropriate for use within the GWr 
model. 
 
Overall Step 1.  RDC method of ETa estimation was calibrated for GMA8 with Landsat 
 TM5 using datasets of NDVI* and AmeriFlux ET flux data. 
 
Overall Step 2. Wet (2007) and dry (2005) years were chosen from the recent record to 
 be coincident with the availability of MODIS data. These Ppt extremes were 
 chosen to capture the expected range of ETa conditions across GMA8. 
 
Overall Step 3. GAP data were used to classify ETa classes across the GMA8 region. 
 
Overall Step 4. Spatially explicit NDVI* from the MODIS data were paired with ET0 to 
 calculate ETa according to the GAP identified ETa class. These data were 
 calculated as quarterly data that were then extracted to the GAM model grid. 
 
Overall Step 5. Spatially explicit quarterly Ppt was summed to annual Ppt for the wet 
 and dry years. 
 
Overall Step 6. To provide an estimator for any Ppt year between the wet year and dry 
 years, ETa and Ppt were used to derive a linear regression equation to estimate 
 ETa from Ppt as  ETa = a + (b * Ppt). About 90% of the GAM grid cells behaved 
 as expected by having a positive slope with higher ETa during the wet year. In 
 other pixels, however, this produced a slope that was negative, due to a transient 
 condition of cloudiness during the 2007 wet year. For such cells showing dry year 
 ETa in excess of wet year, the ETa during the wet year was set equivalent to the 
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 dry year 2005 wet year, effectively setting the slope as one and the intercept equal 
 to the 2005 intercept for that cell. 
 
Overall Step 7. The ETa-Ppt slope and intercept were exported as rasters to be input 
 parameters in the GWr model. 
 

F1. Selection of Representative ETa Model Years 
 
Two years were selected for calibration of ETa for wet and dry conditions. To represent 
the range of Ppt that occurs within the model area, a record dry year (2005) and a record 
wet year (2007) were chosen from recent weather record. Figure F1 shows the large-scale 
average Ppt across three major model regions from these Ppt years, 2005 and 2007. These 
were selected on the basis of consistently low and high Ppt across the project. 
 
 
 
Figure F1. Average annual precipitation over three 
large sections of the GMA8 GWr model region for 
recent years. Years 2005 and 2007 were chosen as 
representative dry and wet years, respectively, to 
model ETa and Ppt. 
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F2. MODIS NDVI* Processing and ETa Quarterly Input Variables 
 
MODIS eight-day composite images data were acquired for 2005 and 2007, the dry and 
wet focus years for ETa analysis. Two MODIS scenes were necessary to cover the 
GMA8 project region, 47 images were collected per year, per scene, totaling 188 scenes 
for the full analysis. A sensitivity analysis performed on these data found that the ETa 
within the quarters was not highly variable and this enabled a simplifying step for 
calculation of total ETa per quarter for each year. 
 
To develop quarterly estimates of NDVI*, raw MODIS scenes were evaluated, merged 
for simplicity, and processed to TM-equivalency before calculating and averaging 
quarterly NDVI* using seven steps. Calculations in Steps 4-6 represent a variant of the 
method generally used for calculating NDVI*. 
 
Processing Step 1. Any remaining clouds or cloud shadows in the “cloud free” MODIS 
product were masked out and reclassified as no data. Even though the 8-day MODIS 
product was used, some clouds are still present in a few scenes. 
 
Processing Step 2. The two MODIS scenes, H9 V5 and H10 V5, were merged into a 
single scene for each 8-day product and then clipped to the approximate outline of the 
project area to reduce the volume of data and the required processing steps.  
 
Processing Step 3. NDVI was calculated for each merged image with Red equal to 
MODIS Band 1 and near Infra-red equal to Band 2. 
 
Processing Step 4. The use of MODIS for the estimation was necessary because its scale 
enabled the estimation of ETa over the study area; however, the ETa relationships were 
developed using Landsat TM. This required that the data be calculated as TM equivalent. 
First however, all scenes were indexed by an offset calculation to correct for regional 
haze, thin clouds, or other issues. This was accomplished by measuring the NDVI values 
over a quarry devoid of vegetation cover. NDVI was first evaluated on one clear 
reference scene to determine the bare soil/rock background value of NDVI. The 
difference of NDVI values for this quarry area on all other images from this reference 
scene were then added or subtracted to all NDVI values on each MODIS image. This 
variant step enabled checking each MODIS image for comparability with the others. 
 
Processing Step 5. A regression equation was applied to calculate values of MODIS 
NDVI that were equivalent to TM NDVI (Figure D1).  
 TM NDVI  = 0.8921 • MODIS NDVI - 0.0518.  
 
Processing Step 6. The MODIS NDVI were transformed to NDVI* values by applying 
stretching parameters NDVI0 and NDVIS. Because of the indexing of Step 4, a set value 
for NDVI0 was used that represented the pixels with bare surfaces at the quarry (Figure 
D2). A standard NDVIS (saturated NDVI) value was applied.  
 NDVI* = (TM equivalent MODIS NDVI - .0705) / (0.8600 - 0.0705).  
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Processing Step 7. NDVI* was averaged for each quarter to reduce the 47 eight-day 
MODIS composite images for each year to four rasters to represent NDVI* for each 
quarter of the wet and dry years.  
 
Processing Step 8. Quarterly NDVI* data were extracted to the GAM grid that were 
paired with quarterly modeled ET0 and quarterly interpolated Ppt (both described in 
Section A) were extracted for each GAM grid. Because of the geospatial complexity 
introduced by the GAM grid for these calculations, they were accomplished in 
spreadsheet software (Excel). Data in Table F1 summarize quarterly variability in 
NDVI*, Ppt, and ET0 across the three major regions of GMA8 depicted in Figure F1. 
 
  
Table F1. Quarterly variables used to calibrate ETa across GMA8. Regions are depicted in 
Figure F1.  
 

  2005 Average 2007 Average 
 Qtr NDVI* Ppt (in/Qtr) ET0 (in/Qtr) NDVI* Ppt (in/Qtr) ET0 (in/Qtr)

Austin Region Q1 0.39 7.58 10.33 0.36 11.61 9.09 
 Q2 0.50 6.44 20.45 0.54 19.18 14.45 
 Q3 0.46 7.81 19.73 0.53 10.81 18.51 
 Q4 0.35 2.45 11.01 0.38 3.38 10.81 

Dallas Region Q1 0.35 8.09 9.76 0.36 11.59 8.55 
 Q2 0.52 5.17 20.63 0.56 22.35 13.45 
 Q3 0.45 6.63 19.87 0.53 10.27 18.73 
 Q4 0.28 1.65 10.65 0.36 5.50 9.74 

Texarkana Region Q1 0.38 9.25 8.16 0.40 9.62 7.98 
 Q2 0.63 6.32 18.38 0.66 19.96 14.81 
 Q3 0.58 9.85 17.96 0.63 11.11 17.79 
 Q4 0.37 2.72 8.98 0.43 7.83 8.25 

 

F3. Gap ETa Classes and Their Application  
 
After calibrating ETa estimation to specific cover types in Section E, USGS GAP data 
were chosen as the basis for mapping to apply the five ETa classes. GAP data, mapped 
nationwide, included GIS layers of detailed ecological descriptions of land cover. The 
GAP survey combined multiple sources of data including digital elevation models and 
satellite imagery from multiple years and seasons that are integrated through a common 
classification system that classifies land cover nationwide (USGS, Accessed 2010).  
 
To define the vegetation that influences ETa across the project region, each grid cell was 
described in terms of the GAP land cover it contained. The detailed ecological 
descriptions of the GAP analysis were used to spatially define the five classes of land 
cover in GMA8: water, urban, crop, grassland, and forest. These five groups, chosen for 
their relevance to ETa estimation, are compilations of similar GAP land cover classes. 
The grassland ETa class, for example, combines GAP analysis grasslands and prairies 
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with bare ground and ephemeral meadowlands because similarities permitted lumping 
into a common ETa class.  
 
GAP classes that did not readily fit into one of the ETa groups were evaluated using 
satellite imagery provided on the USGS Land Cover Viewer assignments. Within the 
project region, all five land-cover classes were defined as well as a hybrid region detected 
over the Edwards Plateau—this region exhibited sparsely forested areas interspersed with 
grasslands and was modeled, like the urban areas, as one-half grassland and one-half 
forested. (Figure F2 and F3). A new raster was generated to spatially represent the extent 
of these five classes as well as a hybrid region of half forest and half grassland over the 
Edwards plateau. 
 
The new raster for ETa classes maintained the GAP 30 meter resolution. These data, with 
a much higher resolution than the GAM one mile grid cells, were used to proportion the 
influences of different ET classes represented within each GAM grid cell. The area of 
individual pixel ETa classes were extracted from the ETa class raster for each GAM grid 
cell and used to create a decimal fraction to apply in ETa calculation. The decimal 
fraction of each ETa class was applied to the RDC calibrated f(K) for each ETa class. 
These values were then summed to form weighted average ETa within each grid cell.  

 
 
 
 
 
Figure F2. Five key ETa 
classes were mapped in the 
project region using the 
land cover data compiled 
by the USGS Gap (Gap 
Analysis Project). 
 
 
 
 
 
 
 
 
 

F4. Quarterly and Annual ETa for Representative Wet and Dry Years 
 
Quarterly ETa was estimated for each cell in GMA8. The calculation was tailored to each 
individual cell by considering the proportions of land cover represented within the cell 
and was driven by quarterly ET0. The decimal fractions of each ETa class were applied to 
estimate ETa according to Equation F1. The unique f(K), statistically fitted to each of the 
ET land cover classes, was previously derived during RDC calibration in Section E. 
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Grassland cover 
on the Llano 
Uplift, Mason 
County 

Edwards Plateau 
Limestone Savanna 
and Woodland, 
Lampasas County 

Forest land cover,  
San Saba County 

Table F2 summarizes the project-wide results and Figure F4 illustrates the quarterly and 
annual ET estimates for the wet (2007) and dry (2005) calibration years. 
                             _____        
       ETai    =  Σ  [ fk [NDVI*] i * Σ ET0i )t     Equation F1                       
           t=0  

Where i is the ith pixel, k is the kth function for the ET land cover class, NDVI* is an 
average value for the quarter, designated t and summed for all four quarters of the 
year. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F3. Examples of grassland (top), forested (middle), and blended grassland / 
forested land cover (bottom) (Google Earth, Accessed 2012). Due to the proportions of 
both grassland and forest areas over the Edwards Plateau (extent shown in Figure F2), ET 
estimates for the region were calculated as one-half grassland and one-half forest. 
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Table F2. Project-wide averages of ETa driving variables and ETa. 
 
 
 
 
 

 

 

 

 

 
 

 

F5. Intermediate Year ETa by Slope between Wet and Dry Years ETa  
 
The end members for high and low precipitation were expected to yield a positive slope 
where the wet year ETa was higher than the dry year ETa. The concept for using slope 
and intercept to define the relationship for each pixel between wet and dry years was 
developed to provide ETa estimation as predicted by Ppt for years that are intermediate to 
the two end member years. This method permits encoding the ETa vs. Ppt relationship 
throughout the project region using only two rasters portraying slope and intercept. 
 
Although calibrating using record dry and wet years is a sound concept, when applied to 
large and highly variable regions such as GMA8, this method may provide results in 
some locations that are contrary to expected, i.e., when ETa increases during a dry year 
over that measured in a wet year. This response would not be expected in an arid 
environment; however, much of the GMA8 region is relatively mesic, moderate, not wet 
or dry. Under these conditions, a reversal of the expected relationship where ETa 
increases during a dry year can occur. A look at Table F2 provides the reason why this is 
so. When averaged across the entire GMA8 region, ETa during a very wet year was only 
about 21% higher than a very dry year. A large range is lacking and the majority of the 
difference between the two years occurred during the first quarter (January through 
March), the difference between years is not very great in terms of the calculated ET even 
though the Ppt is different. A reversal in ETa occurred due to cloud cover and higher 
humidity during the wet year, reducing ET0 so that the ETa calculated from it was 
actually lower. This relationship likely does not concatenate through all years from dry to 
wet (i.e., as the years from dry to wet vary, a bit more rain would not be expected to have 
a slight decrease in ETa). To constrain the possible error arising from this problem, the 
values of ETa for the wet year were set equal to the dry year, hence, having a slope of 1. 
Figure F5 shows the locations where this reversal occurred and where slope was set to 1.  
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Figure F4. Comparison of 
quarterly and annual ET 
estimates for calibration wet 
(2007) and dry (2005) years. 
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Figure F5. In some locations, the ETa calculated for the calibration dry year (2005) 
exceeded the ETa calculated for the calibration wet year (2007). The unexpected result for 
ETa in a dry year exceeding the ETa in the same location for a wet year was likely caused 
by cloud-cover suppression of ET0 in the wet year in a system without a great deal of 
difference in NDVI* from year to year. 
 
To correct for underestimation of ETa, the 2007 estimate was replaced with the 2005 ETa 
estimate. This change was applied across 10.9% of the model area as shown in pink. 
Reservoirs were identified in this process since ET0 tends to be depressed in wet years, 
hence, ETa in wet years for reservoirs, calculated by a simple k factor for water bodies as 
1.05 * ET0, is lower than in dry years. Reservoirs remained within these spatial 
calculations at this stage were later removed since the land-surface calculations for GWr 
for the majority of the region are inappropriate for application to reservoirs that may or 
may not have recharged depending upon regional water tables, intersections with aquifer 
outcrops and underlying permeability and the position and influence of poorly permeable 
layers of fine sediments that can build up.  
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F6. Linear Relationship of ETa to Precipitation Stored Per Pixel 
 
Quarterly ETa estimates were summed to represent annual ETa. The Ppt and ET 
estimates for the wet and dry years were then used as end members to fit simple linear 
relationships for ETa by precipitation. Each grid cell was fitted with a unique equation to 
derive annual ETa from precipitation—the equation can be used to both interpolate 
between the wettest and driest conditions in the model record and to extrapolate ETa 
beyond the precipitation range.  
 
A logical precondition was applied to these data disallowing ETa to exceed annual Ppt 
because the GWr model contains no memory function to account for ETa in excess of 
Ppt. ETa was then estimated for each grid cell over the span of the 50-year model using 
Ppt as the driving variable and the two model parameter rasters representing the slope and 
intercept of Equation F2. Three steps were taken to estimate ETa: 
 

1. Annual Ppt, ETa slope, and ETa intercept rasters were used to solve Equation F2. 
 
 ETai = a + b * (Ppti)      Equation F2 
 

2. ETa in urbanized areas was adjusted for the model years before urbanization 
using the dynamic ETa adjustment process described in Section G: Modeling 
Urbanized Areas 

 
3. ETa was capped at annual precipitation using Equation F3.  

 
If ETai > Ppti, ETai = Ppti     Equation F3 
If ETai ≤ Ppti, ETai  

 

F7. Summary 
 
The application of remotely-sensed dual coefficient ETa estimation to GMA8 was used to 
estimate ETa, a key variable for ground water recharge estimation. HydroBio used the 
RDC method that was developed from Landsat TM5 for predicting ETa that used canopy 
greenness as a scalar against ET0. RDC calibrated to three ETa classes of land cover, 
grassland, woodland and cropland, were modified for application to MODIS data. The 
modified RDC method was combined with USGS GAP for ETa prediction throughout the 
project area. 
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Data provided from the work in this section include: 
• ETa estimates for 1960 – 2009 provided as a geodatabase and as individual 

rasters. 
• ETa slope and intercept rasters provided as model parameters in a geodatabase 

and as individual rasters. 
• MODIS raw and intermediate calibration data.  
• MODIS-derived quarterly NDVI* for 2005 and 2007. 
• Modified GAP land cover classification raster provided in model parameters 

geodatabase and as an individual raster. 
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Latitude-sensitive NDVI* Zones 

G. MODELING URBANIZED AREAS 
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G. Modeling Urbanized Areas 
 
Urbanization over the 50-year span of the GMA8 groundwater recharge (GWr) model has 
altered the natural recharge conditions within significant areas of the GMA8 project area. 
Two critical components of GWr are altered by urbanization:  
 

1. Discharge (Q) increases over urbanized areas due to changes in infiltration 
capacity with the proliferation of urban hardscape. This causes divergence from 
simple soil permeability (Perm) based estimates of Q.  

 
2. ETa decreases over urbanized areas due to depressed NDVI, making the 

urbanized ETa calibration constructed from recent satellite imagery insufficient 
for representing ETa in areas before they were urbanized. 

 
A two step approach was used that first identified those analysis grid cells with a 
significant enough portion of urban land use to affect Q and ETa within that cell. The 
second step used NDVI*, the normalized difference vegetation index that has been 
corrected to yield a zero value for bare/unvegetated areas and unity for peak expected 
vegetation expression. The NDVI* calculated for each urban grid cell was compared to a 
modeled average for the surrounding vegetated areas outside the urbanized zone. The 
ratio between these values represents a value of how much the urban hardscape had 
depressed the expected average NDVI* signature.  
 
Fractional NDVI* was developed as a proxy for the degree of Q and ETa affecting 
urbanization within a model grid cell. The fraction represents a reduction in surfaces with 
the capacity for infiltration and ETa relative to the surrounding undisturbed landscape. 
This decline in NDVI* relative to undisturbed areas is a proxy for how much of the area 
within each grid cell was covered by non-NDVI generating cover, such as roads, parking 
lots and building footprints that render the ground surface impermeable.  For example if 
half of an area of interest is covered by non-NDVI* generating cover, then the NDVI* 
value will be about half of the expected level. Because the extent of urbanization has 
changed over the model calibration years, from 1960 to 2009, the urban extent was 
developed for four different time-steps in order to limit urban model adjustment to the 
extent of urbanization appropriate for each model year. 
 

G1. Historic Urban Boundaries 
 
To model the urban changes throughout the model record, areas of population growth 
were identified and urban boundaries were determined using historical datasets. To 
identify the major urban areas that required dynamic urban boundaries, US Census data 
were evaluated. In the last 30 years, Austin, Dallas, and Fort Worth populations grew, 
while the Waco population remained fairly constant (Figure G1). Austin, Dallas, and Fort 
Worth were flagged for hand-analysis in the 1977 land-cover maps provided by TWDB. 
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Figure G1. Population 
growth in the major urban 
areas within the project 
area. Killeen / Fort Hood 
data was only collected 
for recent years. 
 
 
 
 
 
 
 
 
 
 

 
 
Given the low spatial and temporal resolution of the model (square-mile grid cells and 
annual time steps), a decade-scale was chosen to model urbanization. Three mapped 
urban extents and one interpolated boundary were used to capture the changes in 
urbanization over the duration of the model (Table G1).  
 
Table G1. Four time-steps were used to represent urbanization in the GWr model. Each 
contour represents the extent that urbanization has reached by the end of the stated time-
step. 
 

Time-Step Source of Urban Extent      

1960 – 1977  Land Use / Land Cover Maps of Texas (TDWR) 
1978 – 1989  Interpolated Contour Using ArcMap Spatial Analyst 
1990 – 1999  GAP Analysis Data based on 1999 – 2001 Landsat Imagery 
2000 – 2009  2007 MODIS Imagery 

            
 
The urbanization represented in the GAP data and MODIS imagery was previously 
constrained for the model; shapefiles were generated from existing data. The urbanization 
represented in the Land Use / Land Cover Maps of Texas was defined by hand. Digitized 
copies of the maps containing Austin, Dallas, and Fort Worth were loaded into ArcMap 
and polygons were traced around the urban areas (TWDR, 1977). After combining these 
boundaries into a raster, a contour between the 1977 extent and the 1990 extent was 
interpolated using the Contour tool in the ArcMap Spatial Analyst, Surface Analysis 
toolbox. The urban extent at each of the four time-steps is shown in Figure G2. 
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Figure G2. Urbanization over the model time-span necessitated dynamic spatial 
representation of urban expansion. Four decadal time-steps were chosen based on 
available data. These mapped and interpolated extents will be used to define when and 
where to apply urban corrections to GWr calculation. 
 
Combining the multiple data sources into a dynamic representation of urbanization in the 
model required three steps:  
 

1.) All urban boundaries were defined by polygons in ArcGIS shapefiles;  
2.) The shapefiles were combined and converted to an input ArcGIS GRID to 
develop a contour model; and,  
3) The urban extent for the gap between documented urban boundaries was 
interpolated.  

 
Final urban delineated zones fore each time step were used to spatially identify where 
urban corrections were needed and for what model years. 
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G2. NDVI* Ratio 
 
The urban NDVI* ratio provided a decimal fraction representing the magnitude of 
urbanization’s effect on GWr conditions. This NDVI* ratio was used to enhance Q over 
areas where the Perm-Q relationship was obscured by urbanization and to increase ETa in 
model areas before urbanization reached the extent that depressed the 2007 NDVI* (pre-
urban areas). 
 
The extent of the urban depression of NDVI* values was examined in relation to three 
large urban areas located within the GMA8 project area; Dallas, Waco-Temple, and 
Austin, north to south respectively. The NDVI* value for a MODIS satellite 241m pixel 
was reduced in areas where urban structures and infrastructure replace vegetation. The 
degree of difference between the 'urbanized' NDVI* values and the average NDVI* 
values within the surrounding undeveloped countryside were used as a scalar for the 
degree of urban development within each grid cell. Ratios ranged from 1 for areas of 
parks, golf courses, and wooded parcels that experienced no reduction on NDVI* to close 
to zero representing extreme urban impact such as airports and downtown development. 
Table G2 shows some of the average NDVI* differences found between the pixels within 
the city limits of Dallas, Waco, and Austin and the surrounding countryside. Urban 
Dallas had the lowest NDVI* values, whereas Austin had a greener footprint. All urban 
classes had lower values than the surrounding countryside. 
 
Table G2. Urban NDVI* averages compared to the surrounding countryside. 
 
                    NDVI* AVERAGES        
City Urban Countryside Ratio 
Dallas 0.3903 0.6560 0.59 
Waco-Temple 0.4046 0.5221 0.77 
Austin 0.4635 0.5451 0.85 
    
3 Cities Average 0.4194 0.5744 0.73 

 
To model the NDVI* consistently at a pixel level given that the non-urban vegetation 
showed systematic spatial variation, a method for determining average NDVI* across the 
project area was devised. Having observed that average NDVI* increases with increases 
in latitude, a zoned approach was taken. NDVI* values were collected within linear zones 
as shown in Figure G3. Only NDVI* from areas designated as non-urban by GAP and 
outside of the three urban districts were included to sample the background of 
climatically-determined regional NDVI*. The average within each zone was converted to 
a grid of points for use in a kriging calculation. Where zones overlapped, the average of 
the two zones was used. This grid of points was then converted to a continuous grid layer 
through the use of kriging (Figure G4). 
 
NDVI* values from each cell with greater than 35 percent urban cover were indexed 
against the modeled average NDVI* kriged layer. The difference found in each analysis 
cell from a summer image that was non-water limited (8/5/2007) was an indication of 



 G6

development that has reduced a potential NDVI* signal. This simplified approach 
allowed development of a rough urban impact index that was used to model the amount 
of impervious surface found in a pixel. This metric for the degree of urban impact was 
named the NDVI* ratio.   
 
 

 
Figures G3 and G4. (G3) (left) Latitude-sensitive NDVI* zones used to capture systematic 
spatial variation of NDVI* outside of urban areas. (G4) Average NDVI* layer used to 
represent the spatial average of NDVI* in undisturbed areas to compare the depressed 
values observed in urban pixels. 
 

G3. Dynamic Urban Q 
 
The discharge model for GMA8 was built using precipitation (Ppt), reference ET (ET0), 
and Perm as its main inputs. This was unsuitable for urban areas with structures and 
infrastructure creating large areas of impervious surfaces that were not attributed in the 
soil data. Such urban areas generate additional Q and should, therefore, lower GWr> 
Model GWr predictions, however, were high due to the under-prediction of both Q and 
ETa. To correct for this inaccuracy, factors were devised for application to urban areas to 
more correctly represent the expected increased runoff from impermeable surfaces. It was 
assumed that the reduction in NDVI* was spatially coincident with areas of lowered 
permeability that rejects more infiltration and therefore leads to greater Q. 
 
The NDVI* ratio was determined on a cell-by-cell basis for grid cells that contained 35 
percent or more urban area in the 2007 Landsat image. These data were stored in a raster 
to represent the degree of urban impact at the maximum urban extent for the model. The 
maximum extent corresponded to the 2000 – 2009 extent in Figure G2. For these years, 
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the Q enhancement of Equation G1 was applied to estimate Q over every cell using the 
NDVI* ratio. To model Q for earlier years, the NDVI* ratio was masked to each of the 
earlier urban extents. For example, in 1980, the maximum urban extent NDVI* raster is 
masked to the 1978 – 1989 urban boundary and Q is only enhanced within this boundary. 
Example G1 provides a sample calculation using Equation G1. Table G3 lists the 
appropriate NDVI* rasters to adjust Q estimates within the urban boundary for each 
model time-step.  
 
Example G1 If the NDVI* ratio between urban and countryside NDVI* was 0.4, the 
correction should calculate that 1 – 0.4, or 0.6 of the pixel was represented by structures 
that rendered the ground impermeable. Thus, this correction provided for infiltration 
through only 40 percent of the pixel while 60 percent contributed to increased runoff. The 
corrective equation for Q in this example is: 
 
Urban Pixel Q  = ( Q calculated using Equation C10 * 0.4 ) + Ppt * 0.6 
 
Equation G1 demonstrates the general form of this equation. Note that Urban NDVI 
Ratiok describes the NDVI* raster from time-step “k” (the appropriate rasters for each 
model time-step are listed in Table G3).  
 
Urban Pixel  Q  = ( Q calculated using Equation C10 * Urban NDVI Ratiok )     

           + Ppt * ( 1 – Urban NDVI Star Ratiok )                                  Equation G1 
 

Table G3. Urban NDVI* ratio rasters used in model Q calculations. 
 
 

 

 

 

G4. Dynamic Urban ETa 
 
GWr is calculated as a residual from precipitation less Q, less ETa. Hence, ETa values 
are important inputs for estimation of the correct GWr. ETa was spatially calibrated to 
precipitation (Ppt) for the model using recent satellite imagery (2005 and 2007), while the 
spatially explicit Ppt-ETa relationships thus determined were used in the model to predict 
ETa as a function of Ppt. Estimates using this relationship are referred to as 2005/2007 
calibrated ETa. Within urban areas in recent satellite imagery, the non-NDVI* generating 
cover depressed the expected NDVI* signature. Depressed NDVI* from urbanization, 
therefore, biases ETa calculations in these areas towards lower values that then generate 
high levels of GWr. A pixel that is urbanized in recent years may not, however, have 
been urbanized at an earlier date. ETa for these pixels for the model years before 
urbanization, referred to as pre-urban, will be too low due to the depressed NDVI* bias in 
the model (Figure G5). This would result in an over-estimation of GWr. 

Time-Step “k” NDVI* Ratio Raster (Urban NDVI Ratiok) 

1960 – 1977 Q_Urban_NDVI_Ratio_1.tif 
1978 – 1989 Q_Urban_NDVI_Ratio_2.tif 
1990 – 1999 Q_Urban_NDVI_Ratio_3.tif 
2000 – 2009 Q_Urban_NDVI_Ratio_4.tif 
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To correct for the bias from urbanized ETa calibration for early pre-urban conditions, the 
NDVI* ratio (urban cell/regional average) was used to boost ETa to match the average 
NDVI* in the surrounding countryside. For example, for a pre-urban pixel with a NDVI* 
ratio of 0.4, the ETa was boosted by an additive of 1 – 0.4, or 60 percent of the original 
estimated ETa (Example G2, Equation G2).  
 
Pre-Urban Pixel ETa   = ( ETa calculated using Equation F2 )                  Example G2 

   + 0.6 * ( ETa calculated using Equation F2 ) 
 
Pre-Urban Pixel ETa   = ( ETa calculated using Equation F2 )                  Equation G2 
                       + ( 1 – Pre-Urban NDVI Ratiok ) * ( ETa calculated using Equation F2 ) 
 
Note that Pre-Urban NDVI Ratiok describes the NDVI* raster from time-step “k” (the 
appropriate rasters for each model time-step are listed in Table G4).  
 
Table G4. Pre-Urban NDVI* ratio rasters used in model ETa calculations. 

 
 
 
 
 
 
 
 

 
Figure G5. Correcting for 
depressed NDVI* over 
pre-urban areas. Model 
ETa was calibrated the 
years 2005 and 2007—in 
these years NDVI* was 
depressed over urban 
areas (2000 – 2009 Urban 
Extent) therefore lowering 
ETa estimates in these 
areas for the entire time 
span of the model. To 
correct ETa for the years 
before urbanization had 
reached the modern 
extent, a correction was 
applied over pre-urban 
areas. For example, for 
model years 1960 – 1977 
the correction was 
applied to the area 
between the 1960 – 1977 
extent and the modern 
urban extent (shown in 
red). 

Time-Step “k” NDVI* Ratio Raster (Pre-Urban NDVI Ratiok ) 

1960 – 1977 ETa_Pre_Urban_NDVI_Ratio_1.tif 
1978 – 1989 ETa_Pre_Urban_NDVI_Ratio_2.tif 
1990 – 1999 ETa_Pre_Urban_NDVI_Ratio_3.tif 
2000 – 2009 No Adjustment 
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G5. Summary 
 
The groundwater recharge (GWr) model spans 1960 – 2009 and the extent of 
urbanization within the model area has changed significantly over this period. To 
represent this expansion in the model, urban boundaries were developed for four different 
time steps. The expansion of urban areas affects two GWr variables: (1) surface water 
loss measured as discharge (Q) is increased with the introduction of impervious surfaces 
such as pavement and buildings, and (2) water loss through evapotranspiration (ETa) is 
decreased when vegetation is replaced with urban hardscape.  A metric developed using 
the ratio of the average NDVI* from non-urban regional environments to the NDVI* 
measured over an urbanized pixel was used to represent the degree of urbanization as a 
decimal fraction. This fraction was used to boost Q and decrease ETa based on the degree 
of urbanization present in a pixel at a given year. 
 
Data provided from the work in this section include: 

• Dynamic urban boundary shapefiles in the model variables database and as 
individual files. 

• NDVI*-based Q adjustment rasters for each of the four urbanization time steps in 
the model parameters geodatabase and as individual rasters. 

• NDVI*-based ETa adjustment rasters for each of the four urbanization time steps 
in the model parameters geodatabase and as individual rasters. 
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H1. Mating all Model Databases 
 
Sections A through G describe data collection, preparation and analysis used to develop 
the model relationships. Groundwater recharge (GWr), the residual of infiltrated rainfall 
(Rinfil) minus annual ET (ETa) was defined as a function of availability of precipitation 
(Ppt) that is the driving variable (Figure H1).  
 

 
Figure H1. Flow of GWr estimation and structure of model relationships.  
 
The simple relational structure shown in Figure H1 was developed spatially using raster 
(image) data that allowed for calculations of variables stored by location as pixels. 
Geostatistical interpolation of variables measured at points was combined with regressed 
model relationships for pixels. For output of GWr, each pixel across the region represents 
50 years of interpolated and modeled variables as well as representations of the spatially- 
and temporally-controlled relationships between model variables to enable relational 
model estimates within each raster cell. Table H1 summarizes the raster variable data, the 
math relationships that were used, and the flow of relational model calculations that 
culminated in the estimates of annual GWr for each cell (Equation H1). 
 

GWri = Rinfili - ETai       Equation H1 
 
In this section GWr results are evaluated and final adjustments to GWr estimates are 
discussed. Final GWr results are also discussed in relation to previously published 
groundwater recharge models within the GMA8 model area.  
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Table H1. Model variables, model regression equations and rasters associated with each 
variable, and the databases mated to model each variable. All calculations occurred at the 
pixel level in rasters. *Dynamic urbanization rasters were used to apply minor adjustments 
to modeled Q and ETa in urban areas—these rasters are discussed in section G. Q, ETa, 
and GWr were each capped at Ppt. 

Major Model Components Databases Used To Calibrate 
Model Components 

Variable Model Equation(s) Raster Datasets Calibration Database(s) / Tools 

Annual 
Precipitation 

(Ppt) 
N/A 50 annual kriged 

precipitation rasters. 

Digital Climate Atlas: 50 years of 
point precipitation measurements 
(TWDB, 2009). 

Annual 
Reference 
Evapotran-
spiration 

(ET0) 

ET0 = a + ( b * Ppt ) 

(A) Spatially interpolated 
(kriged) rasters for 
intercept and slope of 
ET0-Ppt regression to 
estimate ET0 from Ppt for 
each model year.  
(B) 50 annual ET0 rasters 
estimated from annual 
Ppt. 

Mesowest (University of Utah, 
Department of Atmospheric 
Sciences, 2010), Mesonet 
(Oklahoma Climatological Survey, 
2008), TexasET (Texas A&M 
AgriLife Extension Service, 2010), 
ref-ET (University of Idaho, 
College of Agriculture and Life 
Sciences, 2010). 

Annual 
Discharge 

(Q) 

Q = aQ + [bQ*(Ppt/ET0)];  
 

bQ = ( bclimate * Ppt/ET0 ) +   
( bPerm * Perm ) + 

Constantb. 
x-interceptQi = bx-int * 

ln(Ppt/ET0i ) + 
Constantx. 

aQ = - bQi * x-interceptQi. 

50 years of Q rasters 
estimated from a multiple 
regression of Ppt/ET0 and 
Perm.—each annual 
calculation inputs annual 
Ppt, ET0, and Perm 
rasters. 

USGS gage data (2010), 
STATSGO (Penn State University 
ESSC, 2006) and NCRS WSS soil 
data (2011). 

Annual 
Infiltrated 
Rainfall 
(Rinfil) 

Rinfil = Ppt - Q 
50 annual Rinfil rasters 
estimated from annual 
Ppt and Q. 

N/A 

Annual 
Evapotran-
spiration 

(ETa) 
ETa = a + ( b * Ppt ) 

(A) Spatially extrapolated 
rasters for intercept and 
slope of ET0-ETa 
regression allow 
estimation of ETa from 
Ppt. (B) 50 annual ETa 
rasters estimated from 
annual Ppt.* 

Ameriflux Network data  
(Heilman, J., 2005 - 2006; Katul. 
and Oren, 2002 - 2005; Oechel,  
2005 - 2006; Verma, 2003 - 2006), 
MODIS TM Imagery (NASA LP 
DAAC, 2005, 2007), USGS Gap 
Analysis Program (2010). 

Annual 
Ground 
Water 

Recharge 
(GWr) 

GWr = Rinfil - ETa 

(A) 50 annual GWr 
Plateau Model rasters and 
(B) 50 annual GWr 
Blended model rasters, 
both estimated from 
annual Ppt, Rinfil, and 
ETa. 

N/A 
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H2. High Ppt / ET0 GWr Adjustments 
 
As Ppt/ET0 increases, the GWr model results indicated incipient GWr occurs after a 
Ppt/ET0 threshold has been reached, then increasing as a diminishing returns curve in a 
non-linear fashion for the majority of Ppt/ET0 conditions. At high Ppt/ET0, however, 
GWr predictions for many of the pixels across the GMA8 region showed a parabolic 
downswing. Q, ETa, and GWr logically increase with increasing Ppt/ET0 for the majority 
of model Ppt conditions and so this behavior indicates that the GWr model was not yet 
correctly calibrated (Figure H2).  
 

 
 
 
Figure H2. Q, ETa, and 
GWr results from 
nearly completed GWr 
model.  
 
Upper graph: 
For this example 0.25 x 
0.25 mi. pixel the GWr 
estimates increased to 
a peak and then 
diminished as ETa and 
Q estimates consumed 
the increasing Ppt/ET0. 
 
Lower graph:  
The majority of the 
pixels across GMA8 
had GWr that did not 
contain the downward 
curve of GWr at high 
Ppt/ET0. 
 
The dogleg of the ETa 
was due to the 
truncation described in 
Section F6. 
 
The hypothesis for the 
decrease in GWr at 
high Ppt/ET0 is that the 
calibration for ETa is 
incomplete and should 
decrease at high values 
of Ppt/ET0. 
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The behavior of the GWr downswing at high values of Ppt/ET0 indicated that the model 
was not yet correctly calibrated. This lack of calibration was hypothesized to occur 
because ETa was not calibrated across all conditions, particularly under annual conditions 
that were extremely wet. The dogleg for the ETa was a logical precondition that was 
established in Section F6 is an example of the difficulty for calibration of ETa, however, 
it can be seen from Figure H2 that this lowermost ETa correction had little or no effect 
upon the GWr because it was below the threshold wetting conditions (as Ppt/ET0) to 
begin GWr accrual.  
 
Because the apparently wettest conditions were used for calibration, extremely rainy 
years were not used for calibration data sets to establish ETa in some watersheds. This 
lead to the underestimation of GWr for years that were highly wet. The divergence of 
GWr from the direct relationship with Ppt/ET0 is influenced by over prediction of ETa at 
high Ppt/ET0. Hypothetically, ETa rates should decrease under the conditions that occur 
with high Ppt because ET0 decreases with the consequent increases in humidity and cloud 
cover during the wettest years. Because of limited ET0 data during recent years of 
coincident MODIS data, rather than recalibrating ETa for the entire range of conditions, 
we chose to adjust GWr directly using trends observed in model output. Two solutions 
were developed to remedy this issue; each uses the GWr estimations predicted by the 
original relational model to extrapolate GWr beyond a threshold Ppt/ET0 value as 
described in the next section. 
 

H2.2 Theoretical Behavior of GWr under High Ppt/ET0  
 
Ppt/ETo represents the relative opportunity for GWr to occur since this parameter 
represents the balance between the water supplied to the soil and near-surface vadose 
zone. As Ppt/ETo increases, atmospheric humidity increases, temperatures are cooler, and 
cloud cover more frequent. These are all functions that reduce ET0 that is the driving 
force governing ETa. NDVI*, the functional switch that scales ET0 for ETa disposition, 
was found to have relatively low inter-annual variability (Section F) in comparison to 
other parameters in the calculation of GWr, for example Q (Section C). Reduction in ET0 
is a mechanism expected to decrease ETa at higher values of Ppt/ET0. 
 
As annual ET0 and ETa decline with increasing Ppt/ET0, more water must be ported to 
runoff because the opportunities for the ground to accept recharge are less, i.e., as the 
degree of wetting increases, the water from precipitation will increasingly be disposed by 
runoff rather than soil uptake because the proportion of time that soils are at or near 
saturation increases. This concept is the same as Hortonian overland flow common to 
surface water hydrology (Bevin, 2004). The rapidly rising limb of Q with Ppt/ET0 
illustrated in Figure H2, therefore, is conceptually correct. The parabolic downward 
response is incorrect and is simply an artifact arising from the lack of appropriate 
calibration for ETa. 
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H2.2 High Ppt/ET0 Adjustments 
 
With the realization that full calibration of ETa through the entire relationship for ETa 
versus Ppt/ETo was beyond the reach of this investigation, another approach was adopted 
for constraining GWr to follow expected behavior. The adopted approach was based 
upon the robust assumption that the upper limb of GWr that shows parabolic decrease can 
be modeled conceptually. The GWr curves (Figure H2): 

• show a minimal value of Ppt/ETo when GWr starts to occur that is both a 
reasonable and expected finding;  

• may have a parabolic lower limb where GWr follows an expected shape of 
diminishing returns as would be expected given that, as wetter weather occurs, it 
enhances Q because wetted and saturated soils limit infiltration; 

• may contain parabolas that peak and then diminish that are an artifact of 
incomplete calibration for ETa; 

• are amenable to a method to constrain the upper limb of the GWr curve, therefore, 
compensating for incomplete calibration of ETa; and 

• because a curve shape for diminishing returns is expected, this curve shape can be 
used as the conceptual curve to correct downward parabolic curve behavior. 

 
A GWr model adjustment was applied only for high Ppt/ET0 portions of the curves. The 
trigger point for when to apply GWr model corrections was defined when higher values 
of Ppt/ET0 yielded values of GWr that were lower than the value at peak GWr. 
Exceedances of the parabolic threshold (peak GWr on the parabola) were identified 
within the data set by a set of appropriate queries.  
 
Two approaches were used to constrain the GWr to prevent the decreasing values at 
higher values of Ppt/ET0 (Figure H3). The first approach, called the Plateau Model, was 
to hold GWr constant once the maximum GWr was reached (Figure H3, shown in 
yellow). This adjustment can be regarded as extremely conservative as it uses the 
expected diminishing returns curve shape.  
 
A second, more complex correction, also applied to high-Ppt/ET0, adjusted GWr using a 
linear regression through the minimum and maximum recharge (blue line) and 
incorporated the results from the plateau model. This second model, called the Blended 
Model, used regression of minimum-maximum GWr values that were “blended” with the 
Plateau model. This yielded a weighted average of the linear and plateau model that 
tethered the upper limb of recharge to the highest GWr previously predicted by the model 
while allowing moderate increase based on the Min/Max GWr Regression (Figure H3, 
GWr Blended Model shown in blue). The following sub-section describes how these 
adjustments were implemented in the model. 
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Figure H3. Exceedance of the Ppt/ET0 parabolic threshold caused the original model to 
incorrectly produce decreasing GWr estimates (black points). To correct this, two models 
were developed to predict GWr for high Ppt/ET0 using the Min non-zero value of GWr and 
the Max GWr (red boxes) paired with their associated Ppt/ET0 values. The two models were 
applied for years with Ppt/ET0 that exceeded the Ppt/ET0 corresponding to Max GWr. 
 

H.2.2 Extrapolating GWr Predictions for Very Years with High Ppt/ET  
 
Relying on the accuracy of the relationships within the model structure, 50 years of GWr 
estimates were used to develop the data for extrapolating GWr as shown in Figure H3. 
For this operation we extracted four values from the 50-year GWr model to summarize 
the GWr relationship to Ppt/ET0 for each pixel in the model (Figure H3): 

 
1. Min GWr: minimum non-zero GWr from 1960 – 2009. 
 
2. Threshold 1: Ppt/ET0 corresponding to the minimum non-zero GWr (this point is 

the threshold in the Ppt/ET0 range at which recharge begins—below Threshold 1 
no recharge occurs). 

 
3. Max GWr: maximum estimated GWr from 1960 – 2009. 
 
4. Threshold 2: The Ppt/ET0 corresponding to the maximum estimated GWr. Above 

this point GWr estimates deviated from expected. 
 
These four values enabled extrapolation of GWr for very high Ppt/ET0 on a pixel-by-
pixel basis. The minimum and maximum GWr and corresponding Ppt/ET0 defined a 
range of values characteristic to each pixel’s unique recharge conditions. The majority of 
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the Ppt/ET0 years, those below Ppt/ET0 Threshold 2, required no adjustments for either 
the Plateau or the Blended GWr model because that portion of the GWr curve followed 
expected behavior (GWr increasing throughout the distribution for the leftward leg of the 
parabolic curve). The two models for correcting the parabolic exceedance problem were 
applied only when Ppt/ET0 exceeded Threshold 2. 
 
The Plateau Model was the more conservative of the two corrections. Above Threshold 2, 
GWr was held constant at Max GWr (Equation H3). This adjustment prevents GWr 
estimates from decreasing at high Ppt, but did not allow GWr to increase above the Max 
GWr predicted in the unmodified 50-year model (Figure H3, yellow line). 
 

If Ppt\i / ET0i ≤ Threshold 2,       Equation H2 
GWrPlateaui = GWri calculated using Equation H1   

 
If Ppti / ET0i > Threshold 2,  
GWrPlateaui = Max GWr   

 
In the second, Blended Model, GWr, was developed to allow a moderate increase in GWr 
above Threshold 2 that followed more closely the expected shape for a diminishing 
returns curve. The blended GWr model combined the results of the Plateau Model with 
the Blended Model. The slope and intercept of the GWrMin/Max regression line for each 
pixel were defined for each model pixel in the form of Equation H4 (Figure H3, red line). 
 

GWrMin/Maxi = aGWr + ( bGWr * Ppti /ET0i ) Equation H4 
 
For the Blended Model, a weighted average between the predictions of the Plateau Model 
and the results of the Min/Max regression were used to calculate GWr for Ppt/ET0 above 
Threshold 2. By using a weighted average, we allowed GWr estimates to increase with 
Ppt/ET0 based on the Min/Max regression while moderating that growth with the Plateau 
model. Blended GWr was estimated using Equation H5 which inhibits GWr from rapidly 
diverging from the previously predicted maximum GWr. 
 

If Ppti / ET0i ≤ Threshold 2,       Equation H5 
GWrBlendedi = GWri calculated using Equation H1   

 
If Ppti / ET0i > Threshold 2,  
GWrBlendedi = ( 0.7 * GWrPlateaui ) + ( 0.3 * GWrMin/Maxi ) 

 
Both GWr Models, Plateau and Blended, were capped at annual precipitation and all 
occurrences of negative values were replaced with zeros. GWr predictions were not made 
over reservoirs, final GWr estimates were set to zero over reservoirs (Equations H6, H7, 
and H8).  
 

If GWrPlateau or Blendedi > Ppti, GWrPlateau or Blendedi = Ppti Equation H6 
If GWrPlateau or Blendedi ≤ Ppti, GWrPlateau or Blendedi  
 
If GWrPlateau or Blendedi < 0, GWrPlateau or Blendedi = 0    Equation H7 
If Qi ≥ 0, GWrPlateau or Blendedi  
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If Reservoir Raster Value = 1, GWrPlateau or Blendedi = 0   Equation H8  

 

H3. Final GWr Estimates 

H3.1 GWr Plateau and Blended Model Results 
 
To determine how widespread the effect of the high-Ppt/ET0 GWr adjustments on GWr 
predictions was, we examined Ppt/ET0 for a relatively dry year (2005), a relatively wet 
year (2007), for the 50-year average, and for the 50-year maximum. Table 1 presents the 
occurrence of pixel values exceeding Threshold 2 as a percentage of total model pixels. 
Pixels that exceed Threshold 2 are adjusted using either Plateau or Blended GWr 
adjustments. The portion of model cells adjusted is low for a dry year but increases 
notably for a very wet year. Under average annual Ppt/ET0, around 70 percent of model 
pixels did not exceed Threshold 2 and, therefore, remained unmodified. 
 
 
Table H2. Occurrence of Ppt/ET0 above Threshold 2 presented as percentage of total 
model pixels. When Ppt/ET0 for a given pixel exceeded that threshold, both the GWr 
Plateau and GWr blended model adjusted GWr predictions. No model adjustments were 
made at or below Threshold 2. 
 

 > Threshold 2 
(model adjustment 

applied) 

<Threshold 2 
(model adjustment 

not applied) 
Notes 

2005 
Ppt/ET0  

(dry year) 
1.93% 98.07% 

During 2005, a dry year, only 1.9% of 
pixels were adjusted with Plateau and 
Blended GWr models. 

2007 
Ppt/ET0 

(wet year) 
60.52% 39.48% 

During 2007, an extremely wet year, 
60.5% of pixels were adjusted in 
Plateau and Blended GWr models. 

50-year 
Average 
Ppt/ET0 

29.63% 70.37% 
29.6% of pixels exceed Threshold 2 for 
the average year and were adjusted by 
the Plateau and Blended models. 

50-year 
Max 

Ppt/ET0 67.54% 32.46% 

32.5% of pixels never exceed 
Threshold 2 and remained unaffected 
by Plateau and Blended GWr 
adjustments. 

 
The differences between the Plateau and the Blended model were subtle and small. We 
evaluated the differences spatially by comparing the 50-year average GWr results of each 
model. While the difference between the models is small, the Blended GWr model 
predicts up to 0.5 inch per year over the Plateau model predictions in the areas shown in 
Figure H4.  
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Differences in 50-Year Average GWr  
Predictions: 
Blended and  
Plateau Models 

 

 
Figure H4. Comparison of the 50-year average predictions of the Plateau and Blended GWr 
models. The majority of the difference between the two models was less than 0.5 in. A 
short study of the pixels with a difference greater than 0.5 in, shown in red, 15 were less 
than 1 in, and 8 pixels fell within the range of 1 in to 3.5 in (these 8 all fell within urban 
boundaries.  
 

H3.2. ETa Calculated as a Residual from Plateau and Blended Models 
 
One of the benefits for constraining GWr using the two models chosen was the ability 
that this confers for understanding the shape of the ETa as a residual. Figure H5 presents 
the results for a single pixel that was constrained by Plateau and Blended Models. These 
outputs were used to calculate ETa as a residual to provide an advanced look at what ETa 
should look like were significant additional calibration accomplished over the full range 
of Ppt/ET0. Little difference was visually detectable in the ETa residual between the 
Plateau and Blended Model results. 
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Figure H5. ETa estimates 
calculated as residuals after 
application of the Plateau and 
Balanced Model adjustments of 
GWr from  
ETa = Ppt – Q - GWr 
 
Upper Graph:  
Application of Plateau Model 
 
Lower Graph: 
Application of Blended Model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

H3.3. Comparison of GWr Results and Previously Published Recharge Estimates 
 
GWr results were compared to published GWr estimates. Figure H6 shows overall trends 
in the estimated recharge as controlled by the suite of spatially calibrated data that were 
used to construct the model—precipitation, climate variables, soil permeability, and land 
cover type. The incorporation of these individually calibrated variables in the GWr model 
produced reasonable estimates of GWr based on relationally accurate estimates of all 
GWr variables—Ppt, Rinfil, and ETa.   
 
We compared outputs from the Harden (2004) and HydroBio models on a per county 
basis. The Harden (2004) model was the basis for comparison because this was the most 
recent and extensive groundwater model available. Although calculated differently, 
Harden’s Recharge minus EVT (MODFLOW evapotranspiration) should estimate a 
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variable roughly equivalent to GWr—the resulting net recharge is the water that enters 
the aquifer. For the comparison, average annual recharge estimates over Trinity and 
Woodbine aquifer outcrops within each county were summed as total  acre feet per year. 
Recharge data for the Harden county-by-county totals were provided by TWDB model 
runs for 1980 – 1999 (2011). Magnitudes of Harden recharge, Recharge minus EVT, and 
HydroBio’s GWr are shown in Figure H7.  
 
In order to enable the most direct comparison, HydroBio GWr data in Figure H7 were 
generated for the same calibration period as the Harden Model (1980 - 1999). The 
relationships between the Harden and HydroBio models differed from one location to 
another. We collected the percentage of each land cover class over aquifer outcrop areas 
for each county to evaluate the differences between HydroBio and Harden results. 
Finally, each outcrop area was also evaluated in Google Earth to detect visible surface 
conditions that would affect GWr. 
 
For counties where HydroBio’s GWr estimates were notably different from the modeled 
Harden Recharge minus EVT estimates, model variables and spatial controls were 
examined in order to determine which variables were responsible for driving HydroBio 
GWr results differing from the Harden results. Where notable differences existed 
between the two models, documented GWr-affecting variables were found to explain the 
differences.  
 
When evaluations were concluded, four major factors arose as likely explanations for 
model disagreements (see Figure H6). 
 

1. Outcrop areas in counties with large amounts of exposed limestone and low 
vegetation cover, including quarries, drill pads, and general land cover 
disturbances were associated with enhanced GWr (for example, Burnet, Coryell, 
Lampasas, Travis, and Tarrant). In these cases, HydroBio GWr was greater than 
Harden Recharge minus EVT. The higher values of GWr were responsive to 
special conditions of low vegetation cover that can foster GWr.  

 
2. Outcrop areas with a large proportion of crops were associated with GWr 

estimates lower than Harden estimates (for example, see Comanche and Eastland 
in Figures). Crop water use and enhanced ETa from cultivated crops explain the 
lower GWr estimates. 

 
3. Urbanized model areas were associated with GWr estimates higher than Harden 

estimates (for example, see Denton, Dallas, Tarrant, and Travis). The combination 
of land disturbance (exposed bedrock) and depressed ET over low-vegetated 
urban areas enhanced GWr in the HydroBio model.  

 
4. GWr estimates over outcrops along the Red River were higher than Harden 

estimates (for example, Fannin, Lamar, and Red River). These areas showed 
enhanced Q and GWr due to high Ppt and rapid permeability through the alluvial 
soils in the HydroBio model. 
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50-year Average GWr 
Compared to Literature 

Recharge Estimates in in/yr 

 
 
 
Figure H5. Top: Plateau GWr 
results fall within the range of 
estimates compiled in a 
literature review, Section C). 
Values on the map represent 
the approximate average or 
range of recharge estimates 
reported in the literature. 
(Blended GWr model not 
shown because differences 
between Plateau and Blended 
models are not detectable 
over the 50 year average at 
map scale.) Left: Citations for 
previously published 
groundwater recharge 
estimates. 
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H3.4. Comparison of GWr Behavior in HydroBio and Harden Models 
 
Because the HydroBio approach to estimation of GWr is radically different from the 
existing groundwater modeling in Texas, further comparisons were made to investigate 
the differences. Figure H8 provides a look at model behavior in a range of dry and wet 
years. The striking difference between the approaches is the relatively low inter-annual 
variability of the recharge predictions in Harden in comparison to the results from the 
HydroBio results that vary greatly depending upon the available precipitation. This 
section is not provided to call attention to either models shortcomings but simply to 
demonstrate the different results from the two efforts. 
 
Figure H8. HydroBio GWr estimates compared to Harden model outputs illustrate the 
effects of urbanization, exposed bedrock, river alluvium, and crop water upon GWr. 
Tarrant County (upper left) GWr estimates were notably higher than Harden Recharge 
minus EVT—this may be due to land cover disturbances and depressed ETa in an urban 
environment (alternatively this may also indicate the need for better calibration in urban 
areas). GWr in Burnet County (upper right) exceeds Harden Recharge minus EVT—the 
difference is attributable to exposed limestone bedrock accepting infiltration. Red River 
County (lower left) demonstrates disagreement between models associated with highly 
permeable river alluvium accepting infiltrated rainfall in the HydroBio model. In Comanche 
County (lower right) GWr is slightly lower than Harden Recharge minus EVT: crop water 
use is associated with the difference. The differences between the Plateau and Blended 
GWr models are indistinguishable at the annual recharge over outcrop by county scale in 
Burnet, Red River, and Comanche Counties. (Negative Harden Recharge minus EVT values 
not shown). 
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H5. Summary 
 
The model relationships between GWr driving variables were assembled to solve for 
GWr across the GMA8 project area. Model instability at very high precipitation, due to 
incomplete calibration of ETa over the entire possible range of wet to dry conditions 
necessitated the development of two alternate models for predicting GWr under extreme 
Ppt/ET0 conditions, Plateau and Blended. The results of the two alternate models 
demonstrated subtle spatial differences. When compared to previously published recharge 
estimates, GWr Plateau and Blended model estimates corresponded in magnitude but 
demonstrated minor differences in spatial distribution. Because HydroBio GWr estimates 
are spatially calibrated to independent variables, including Perm and land cover type, the 
model results are controlled by the actual environment. Spatial variation in GWr 
estimates correspond to the varied environmental conditions within the project—
demonstrating the relational accuracy of the model.  
 
Data provided from the work in this section include: 

• GWr Plateau estimates for 1960 – 2009 provided as a geodatabase and as 
individual rasters. 

• GWr Blended estimates for 1960 – 2009 provided as a geodatabase and as 
individual rasters. 

• Threshold 2 raster used in GWr Plateau and Blended calculations. 
• Max GWr raster used in GWr Blended calculations. 
• Slope and intercept rasters for GWrMinMax linear regression. 
• Reservoir location raster. 
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I1. Limitations and Recommendations  
 
This section should be reviewed in order to best use the groundwater recharge (GWr) 
model results. Here we provide an overview of the limitations introduced by data 
restrictions and the broad generalizations made at the model scale as well as 
recommendations based on insights from the modeling process. Recommendations are 
made for modeling GWr in general, for future GMA8 modeling projects, and for using 
the results of this GWr model in future groundwater availability models of GMA8. 
 

I1. Limitations of the GWr Model 
 
In order to interpret and use the results of the GWr model, we provide the following 
description of the data restrictions and limitations. 
 

I1.1 Data Restrictions 
 
The GWr model was assembled from the most accurate characterization of each of the 
parameters possible. This necessitated required interpolation over model areas and/or 
calibration years with incomplete data coverage. 
 
Evapotranspiraton (ET) data were temporally limited so techniques were developed to 
estimate ET for the early model years.  Reference evapotranspiration (ET0) was a critical 
variable for model calibration because it moderates both annual evapotranspiration (ETa) 
and discharge (Q). Climate data sufficient for ET0 estimation, however, were only 
available for recent years in the model record. To model ET0 for the 50-year model 
record (1960 – 2009) precipitation (Ppt) was used to estimate ET0 for the complete model 
record (described in Section A3). Measured climate data for calculating ET0 on an annual 
basis for the model would be more accurate than the Ppt approximation used for the 
model, but these data was not available.  
 
Discharge data were spatially limited within the model due to poor availability of 
undisturbed watersheds in the USGS stream gage archive. Many watersheds either had 
incomplete discharge records or had disturbances such as urbanization, reservoirs and 
irrigation diversions that could obscure the relationship between Q and the underlying 
soil properties. After eliminating incomplete and disturbed watersheds, 16 watersheds 
remained to represent 49,000 square miles. This necessitated extrapolation of these 
records throughout the model domain to simulate the many complex environments that 
give rise to GWr (the watershed selection process is described in Section B2). 
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I1.2. Broad Characterization: 
 
Generalizations of the variables and processes controlling GWr were necessary to 
construct the model. Complex variables were distilled into single “lumped” variables. 
Spatial averaging was used to parse data into square-mile grid cells with data reported as 
single annual values. Some variables such as groundwater pumping were excluded in 
order to characterize the broad extent of the model. These generalizations are noted 
below for model users to consider during the interpretation of results and the use of GWr 
results in further modeling. 
 
The square-mile grid cells and annual time steps used for the GMA8 model allowed for 
GWr estimation through lumped variables. As examples, Q was chosen as a lumped 
variable to represent aquifer discharge, bank storage, and overland flow with one value 
and ETa was represented as combined canopy interception, transpiration, and soil 
evaporation. While the lumped variable approach worked for the native countryside, for 
the highly variable recharge conditions in urbanized regions, such coarse resolution was 
not appropriate. The spatial variability of recharge conditions in urbanized areas was lost 
when complex variables were lumped over a square-mile.  
 
Changes in urban extent over the 50-year model were captured only by the rough 10-year 
time-steps used to model urbanization --the decade time scale being the highest resolution 
possible to capture urban changes detectable at the square-mile scale. Hence, the GWr 
estimates within urbanized regions were generalized in a manner appropriate for 
assessing GWr over very large regions (e.g., many counties), but should not be used for 
higher resolution evaluation within urban regions (e.g., scale of a county or two).    
 
This GMA8 GWr assessment did not consider pumping stresses on the aquifers across 
the region, so the parameters used in the model, without adjustment, cannot be 
represented dynamically in relation to changing heads induced by pumpage. For example, 
Q represents watershed discharge (water rejected by the aquifer) and is anticipated to 
vary with pumping stresses as the pumping makes space available in the aquifer for water 
intake, thereby inducing GWr and decreasing Q. The GMA8 GWr model depicts the 
relationships between model variables and the magnitude of Ppt / ET0. These variables 
are appropriate for use as raw inputs within future modeling programs that consider the 
effects of pumping stresses. Such intensive, head-dependent evaluations are best made 
for smaller regions of GMA8, for example at the scale of a few counties rather than as an 
assessment over the full 49,000 square miles. 
 

I2. General Recommendations for GWr Modeling  
 
The process of developing the GWr model broke new ground in the calibration and 
evaluation of recharge. The results and methods that were used in modeling can be 
applied in future modeling studies to help formulate parameters and processes for 
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assessing GWr in Texas. Below, we present insights on the use of precipitation 
measurements, stream gage data, and the ETa estimates provided with this model.  
 
Although Ppt is the driving variable for GWr, the use of Ppt / ET0 for assessing 
hydrologic processes was a significant improvement over raw Ppt measurements. Scaling 
Ppt with ET0 effectively linearized Q, runoff and base flow regressions so that each could 
then be spatially extrapolated (see Section C2.1). Instead of using raw Ppt as the driving 
variable for GWr, future modeling should consider the use of Ppt / ET0 as a variable 
indicative of available incoming rainfall that has been corrected for water losses driven 
by ET0 conditions. This is especially appropriate for the coarse annual time step. 
 
Total discharge, Q, was useful for assessing the proportion of incoming rainfall available 
for ETa and GWr. The discharge measured at stream gages can be used directly or it can 
be processed with programs such as USGS’s streamflow partitioning program PART to 
separate gaged Q into two values, both runoff at the surface and sub-surface base flow 
(USGS, 2010). When the partitioned results were evaluated for use as individual 
variables the model, runoff as a measure of surface water loss and base flow as an 
estimate of minimum groundwater recharge, the results were questionable (see Section 
C1). The partitioning algorithm introduced errors and created uncertainty in model 
estimates. In particular, this uncertainty came from the interpretation of PART estimated 
“base flow”. Because the interpretation of base flow estimates could not be applied 
universally for the model, neither base flow nor runoff was used for the model. 
Simplifying assumptions and choosing Q to represent that portion of Ppt rejected from 
recharge was a helpful simplification recommended for similar modeling efforts. 
   
A landscape-scale study of ETa was beyond the scope of this project, but model ETa 
calibration provided insight into important details that should be considered when 
modeling this variable in the future. First, a landscape-scale model of ETa requires that 
the full range of ETa be represented in the calibration data, requiring imagery at a higher 
resolution and over a long enough time span to capture all variability (this would require 
additional processing time and the purchase of necessary imagery). ETa calibration was 
based upon a record wet and a record dry year, however, this failed to capture all regional 
variability as true extremes were not universally represented across GMA8 within the two 
calibration years. Second, the relationship between ETa with Ppt changes with higher 
magnitude precipitation. As Ppt approaches high values the potential for ET, as ET0, 
diminishes as a result of climatic feedback (cooler, more humid, less solar radiation) and 
the corresponding rate of ET should diminish concurrently. The last adjustments to the 
GWr model (Plateau and Blended GWr) were used to simulate this change in ET 
behavior at high Ppt by adjusting the GWr distribution to an expected diminishing returns 
curve shape at higher Ppt / ET0. Inverting either the Plateau or Blended GWr model, and 
estimating ETa as the residual of GWr minus infiltrated rainfall (Rinfil) confers an ETa 
curve through the entire range of Ppt / ET0 to better represent the dynamic variation of 
ETa for future models (see Figure H5 in Section H3.2). This shape for ETa at the 
landscape level is a new contribution to the understanding of dynamic ETa and should be 
used to precondition the use of ETa in future studies of GWr within Texas.  
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I3. Recommendations for Future GWr Modeling in GMA8 
 
The following projects are suggested based on what we have learned during model 
calibration and evaluation. The results of the relational GWr model provide a sound basis 
for more detailed and expanded studies in the following areas:  
 

1. Incorporate a memory function for soil water to enable antecedent climate 
conditions to carry water over from a wet to a dry year as soil water storage so 
that the model can better represent GWr across multiple model years. This will 
require calibration and development at higher resolution than the GMA8 GWr 
model. A carryover can be effective for evaluating the changes in GWr from dryer 
and hotter conditions across GMA8 to represent climatic changes. 

 
2. Evaluate the effect of bark beetle-induced cedar die-off on GWr. Recharge is 

directly affected by vegetation cover and large areas of cedar die-off occurred 
during 2011 in the Trinity Aquifer upland due to drought. Reduced cedar cover 
may affect GWr because cedar tend to be the climax species covering rocky 
uplands with very thin soils—zones of expected recharge. GWr increases driven 
by the removal of vegetation that intercepts Ppt and redirects it to ETa may be 
transitory or permanent through the feedback mechanism of climatic trends.  

 
3. Reassess GWr within urbanized areas by conducting high-resolution studies of 

ETa and Q for urban areas. Imagery with a higher resolution than MODIS should 
be used to capture the high spatial variability in ETa over urbanized region for 
this GMA8 model (Landsat TM, with 30-m pixels and 25+ year archive would be 
ideal). Q in urban areas should be calibrated using watersheds that have become 
urbanized in recent years so that before and after conditions recorded at these 
gages can be used to model changes in Q while factoring the effects of 
urbanization. We did not use urbanized watersheds in model calibration because 
diversion and other disturbances obscured the relationship between Q and the 
underlying soil permeability.  

 

I4. Recommendations for Using GWr Estimates in Future Models 
 
The GWr model is anchored to the landscape-position-determined controlling variables 
by a strong relational structure. Each of the intermediate variables was carefully 
calibrated to measured data across the landscape and evaluation indicates that the 
resulting predictions of each variable closely model the calibration data (see, for example, 
section C3.3). By maintaining consistent relationships between all of the model variables 
and the underlying landscape, we have provided a product that can be easily manipulated 
using simple scaling or the addition or subtraction of a universal constant for the full 
project area. To maintain the relational integrity of the model it is important to apply 
adjustments universally for the project or area of interest within the project area so that 
the relative proportions of each variable are preserved. 
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When incorporating GWr values in future modeling efforts, GWr can be adjusted up or 
down universally to match expected or previously reported values. Figure I1 
demonstrates simple manipulations for adjusting GWr and how each adjustment can vary 
across the range of GWr values. An additive (or subtractive) adjustment, for example, 
will affect results in the same increment across the entire range of GWr predictions. 
Subtraction will cause some values of GWr to become negative, an impossible result so if 
this test adjustment is performed all negative values should be converted to zeroes. 
 
A scalar adjustment can be used to make small changes for low GWr estimates and 
relatively larger changes for high estimates. GWr can be adjusted upward using a 
constant to match the anticipated level of recharge over the western plateau. When this 
adjustment is made universally the change in the predictions across the remainder of the 
model will maintain proportion. In another scenario, GWr can be adjusted downward to 
minimize or eliminate GWr predictions over non-aquifer outcrop areas by applying a 
fractional scalar or subtracting the minimum value necessary to eliminate GWr over these 
areas. Thus the flexibility of the relational GWr results allows both the end-user and 
future modeler to “tweak” results to fit the GWr range necessary to match heads within 
traditional groundwater modeling while maintaining relationally-accurate values across 
GMA8. 
 

 
 
Figure I1. Changes 
resulting from simple 
GWr adjustments. 
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High shrink-swell soils (laterites) of the 
Blackland Prairie caused wracking of the 
power lines in this photograph. Such tight, 
clay rich soils impede or prevent infiltration.
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Mussell shell found in the waters of 
the creek shown above.  

The depositional discontinuity may 
have resulted from erosion due to  early 
to mid 20th Century cotton farming in 
this Blackland Prairie photo. 
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K. Appendix 2: Deliverables 
 
Section A 
Data provided from the work in this section include: 

• Annual kriged Ppt for 1960 – 2009 provided both as a geodatabase and as 
individual rasters. [GMA8_1960_annual_ppt.tif] 

• Annual ET0 estimates for 1960 – 2009 provided both as a geodatabase and as 
individual rasters. [etoi_1960.tif] 

• Annual ET0 slope and intercept rasters in the model parameters geodatabase and 
as individual rasters. [ETo_Intercept_a_GAM.tif] 

• ET0 calibration station locations point shapefile in the model parameters 
geodatabase and as a separate file. [ET_Stations_Final.shp] 

 
Section B 
Data provided from the work in this section include: 

• Permeability rate (in/hr) raster both in the model parameters geodatabase and as 
an individual raster. [Permeability.tif] 

• Calibration watershed USGS gage locations shapefile in model parameters 
geodatabase and as a separate shapefile. [USGS_Gage_Stations.shp] 

• Calibration watershed boundaries shapefile in model parameters geodatabase and 
as a separate shapefile. [USGS_Watershed_boundaries.shp] 

• Calibration watershed gage data including quarterly and annual Q, Ppt, and ET0 in 
Excel Individual Watershed Analysis spreadsheet. 
[Individual_Watershed_QAnalyses.xls] 

• Q estimates for 1960 – 2009 provided both in a model variable geodatabase and 
as individual rasters. [q_1960.tif] 

 
Section C 
Data provided from the work in this section include: 

• Calibration watershed USGS gage locations shapefile provided in the model 
parameters geodatabase and as a separate file. [USGS_Gage_Stations.shp] 

• Calibration watershed boundaries shapefile provided in the model parameters 
geodatabase and as a separate file. [USGS_Watershed_boundaries.shp] 

• Calibration watershed data including quarterly and annual Ppt, ET0, and gaged Q 
in Excel Individual Watershed Analysis spreadsheet. 
[Individual_Watershed_QAnalyses.xls] 

• Q estimates for 1960 – 2009 provided as a geodatabase and as individual rasters. 
[q_1960.tif] 

• Rinfil estimates for 1960 – 2009 provided as a geodatabase and as individual 
rasters. [rinfil_1960.tif] 

• Unique Q regions boundaries defined in raster provided in model parameters 
geodatabase and as a separate raster. [Discharge_Regions.tif] 

 
Section D 
Data provided from the work in this section include: 
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• ETa estimates for 1960 – 2009 provided as a geodatabase and as individual 
rasters. [etai_1960.tif] 

• ETa slope and intercept rasters provided as model parameters in a geodatabase 
and as individual rasters. [ETa_Slope_b.tif & ETa_Intercept_a.tif] 

• MODIS raw and intermediate calibration data. [1_Raw_Files, 2_Merged_NDVI, 
& 3_TM_Adjusted file folders] 

• MODIS-derived quarterly NDVI* for 2005 and 2007. [4_NDVIstar file folder] 
 
Section E 
Data provided from the work in this section include: 

• ETa estimates for 1960 – 2009 provided as a geodatabase and as individual 
rasters. [etai_1960.tif] 

• ETa slope and intercept rasters provided as model parameters in a geodatabase 
and as individual rasters. [ETa_Slope_b.tif & ETa_Intercept_a.tif] 

• MODIS raw and intermediate calibration data. [1_Raw_Files, 2_Merged_NDVI, 
& 3_TM_Adjusted file folders] 

• MODIS-derived quarterly NDVI* for 2005 and 2007. [4_NDVIstar file folder] 
 
Section F 
Data provided from the work in this section include: 

• ETa estimates for 1960 – 2009 provided as a geodatabase and as individual 
rasters. [etai_1960.tif] 

• ETa slope and intercept rasters provided as model parameters in a geodatabase 
and as individual rasters. [ETa_Slope_b.tif & ETa_Intercept_a.tif] 

• MODIS raw and intermediate calibration data. [1_Raw_Files, 2_Merged_NDVI, 
& 3_TM_Adjusted file folders] 

• MODIS-derived quarterly NDVI* for 2005 and 2007. [4_NDVIstar file folder] 
• Modified GAP land cover classification raster provided in model parameters 

geodatabase and as an individual raster. [GAP_ETa_Classes.tif] 
 
Section G 
Data provided from the work in this section include: 

• Dynamic urban boundary shapefiles in the model variables database and as 
individual files. [Urban_extent_yr_1977.shp] 

• NDVI*-based Q adjustment rasters for each of the four urbanization time steps in 
the model parameters geodatabase and as individual rasters. 
[Q_Urban_NDVI_Ratio_1.tif] 

• NDVI*-based ETa adjustment rasters for each of the four urbanization time steps 
in the model parameters geodatabase and as individual rasters. 
[ETa_Pre_Urban_NDVI_Ratio_1.tif] 

 
Section H 
Data provided from the work in this section include: 

• GWr Plateau estimates for 1960 – 2009 provided as a geodatabase and as 
individual rasters. [gwr_a_1960.tif] 
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• GWr Blended estimates for 1960 – 2009 provided as a geodatabase and as 
individual rasters. [gwr_c_1960.tif] 

• Threshold 2 raster used in GWr Plateau and Blended calculations. 
[Threshold_2.tif] 

• Max GWr raster used in GWr Blended calculations. [Max_GWr.tif] 
• Slope and intercept rasters for GWrMinMax linear regression. 

[GWr_MinMax_Slope_b.tif & GWr_MinMax_Intercept_a.tif] 
• Reservoir location raster. [Reservoir_Mask.tif] 
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L. APPENDIX 3: REVIEW OF MODEL CALCULATIONS 

     
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Depth gage on an Arizona crossing in the 
Trinity uplands. Soured bedrock forms the 
bank and the gage has been battered 
during high flows. 

Evidence of extreme discharge event 
following hurricane-derived high 
precipitation in Summer, 2011 over 
the Edwards-Trinity Aquifer region.
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L. Appendix 3: Review of Model Calculations 
 
To estimate annual groundwater recharge (GWr), four intermediate variables were 
defined: reference evapotranspiration (ET0), discharge (Q), infiltrated rainfall (Rinfil), 
and annual evapotranspiration (ETa). These variables were calibrated to annual 
precipitation (Ppt) for the model and a sequence of regression equations was developed to 
estimate each variable—yielding the data necessary to estimate GWr. Figure L1 shows 
the flow of model calculations and the major model equations used (intermediate 
calculations are detailed in the following sub-sections). This section steps through the 
process of calculating each model variable from ET0 through GWr. The purpose of this 
section is to explain the complete model calculation process including all equations and 
rasters used. Table L1 presents the variable naming conventions used in the model. 
 

 
Figure L3. GWr estimation 
for a given year “i” is 
guided by four Ppt-driven 
linear equations: 
 
1) ET0i = a + b * Ppti 
2) Qi = a + b * ( Ppt / ET0i  ) 
3) Rinfili = Ppti - Qi 
4) ETai = a + b * Ppti 

 
 
 
 

 
Table L1. Overview of all variables used in model calculations. 

Table of Commonly Used Abbreviations for Model Calculations 

ET0 Reference evapotranspiration. Reported in inches per year. 

ETa Annual evapotranspiration. Reported in inches per year. 

GWr Groundwater recharge is the residual of infiltrated rainfall (Rinfil) minus annual 
evapotranspiration (ETa). Reported in inches per year. 

NDVI* Ratio 

A metric developed using the ratio of the average NDVI* from non-urban regional 
environments to the NDVI* measured over an urbanized pixel was used to 
represent the degree of urbanization as a decimal fraction. This fraction was used to 
boost Q (Urban NDVI* Ratio) and decrease ETa (Pre-Urban NDVI* Ratio) based 
on the degree of urbanization present in a pixel at a given year. NDVI* Ratio values 
are stored in individual rasters masked to appropriate urban / pre-urban boundaries 
for each model time-step. 



 L3

Perm Permeability. Final value used to represent infiltration capacity of soil within model 
calculations. Reported in inches per hour. 

Ppt Precipitation. Reported in inches per year. 

Q Discharge: surface water drained from recharge system. Reported in inches per 
year. 

Rinfil 
Infiltrated rainfall; the residual of precipitation minus discharge. Reported in inches 
per year. 

L1. Reference Evapotranspiration (ET0) Estimation 

L1.1. ET0 for year “i” was calculated from Ppt for year “i” using Equation 1. 
 

Input Rasters:  
• Annual kriged precipitation (Ppt). 
• ET0 intercept (a).  
• ET0 slope (b).   

 
ET0i = aET0 + bET0 * Ppti       Equation L1 

    

L2. Discharge (Q) Estimation 
 
L2.1. Annual slope (b) for Q estimation equation was calculated for year “i” using Ppti, 

ET0i, and the constants presented in Table L2 to solve Equation L2. Q slope was 
calculated individually for each model year. Unique constants were used in the 
calculations for each of the two discharge regions in the model defined in the 
discharge regions raster. 

 
Input Rasters:  
• Annual kriged precipitation (Ppt). 
• Annual ET0 calculated using Equation L1. 
• Discharge regions. 
• Permeability. 

 
Table L2. Q multiple regression constants used to calculate slope of annual Q 
regression equation. 
 

 Region 1 Region 2 

bclimate 50.65   4.00 

bPerm - 3.41 - 1.50 

Constantb - 4.39 26.00 
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bQi = ( bclimate * Ppti / ET0i ) + ( bPerm * Perm ) + Constantb  Equation L2 

 
L2.2. X-intercept of Q estimation equation was calculated for year “i” using Ppti, ET0i, 

and the constants presented in Table L3 to solve Equation L3. Q x-intercept was 
calculated individually for each model year. Unique constants were used in the 
calculations for each of the two discharge regions in the model defined in the 
discharge regions raster. 

 
Input Rasters:  
• Annual kriged precipitation (Ppt). 
• Annual ET0 calculated using Equation 1. 
• Discharge regions. 
 
Table L3 Q regression constants used to calculate x-intercept of annual Q 
regression equation. 

 Region 1 Region 2 

bx-int 0.2983 0.2000 

Constantx 0.5974 0.5752 

x-interceptQi = bx-int * ln( Ppti / ET0i ) + Constantx   Equation L3 

    
L2.3. Intercept (a) of Q estimation equation was calculated using slope and intercept for 

year “i” (calculated with Equations L2 and L3) to solve Equation L4. Q intercept 
was calculated individually for each model year. 

 
aQi = - bQi *  x-interceptQi      Equation L4 

 
L2.4. The Q slope (b) and intercept (a) calculated in Equations L2 and L4 for year “i” 

were used with Ppti and ET0i to solve Equation L5. This initial estimate of Q was 
refined using Equations L5 through L8, below, to produce a final estimate of Qi. 
 
Input Rasters:  
• Annual kriged precipitation (Ppt). 
• Annual ET0 calculated using Equation L1. 
 
Qi = aQi + bQi * ( Ppti / ET0i )      Equation L5 
 

L2.5. Dynamic adjustments to Q predictions over urbanized areas were applied using 
the Q estimated with Equation L5, Ppti, and the appropriate Urban NDVI* ratio 
raster to solve Equation L6. The appropriate rasters for each model time-step are 
listed in Table L4. Note that “Urban NDVI Ratiok” describes the NDVI* raster 
from time-step “k”. For each time-step the Urban NDVI Ratio raster was masked 
to the modeled urban extent and was populated with the value “1” in all other 
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locations—when “1” is input for Urban NDVI Ratio value the Q estimated using 
Equation L5 is unchanged.  

 
Table L4. Urban NDVI* ratio rasters used in model Q calculations. 

Time-Step “k” 
NDVI* Ratio Raster 
(Urban NDVI Ratiok) 

1960 – 1977 Q_Urban_NDVI_Ratio_1.tif 

1978 – 1989 Q_Urban_NDVI_Ratio_2.tif 

1990 – 1999 Q_Urban_NDVI_Ratio_3.tif 

2000 – 2009 Q_Urban_NDVI_Ratio_4.tif 

 
 Q = ( Q calculated using Equation 5 * Urban NDVI Ratiok )     Equation L6 

       +  Ppti * ( 1 – Urban NDVI Ratiok )        
 
L2.6. Q was capped at the annual precipitation using Equation L7. This adjustment 

prevents the occurrence of negative infiltrated rainfall (Rinfil) estimates in 
Equation L9. 

 
If Qi > Ppti,         Equation L7 
Qi = Ppti  

       
If Qi ≤ Ppti,  
Qi calculated using Equation L6 

 
L2.7. Negative Q estimates were replaced with zeros using Equation L8. This 

adjustment prevents illogical Rinfil estimates in Equation L9—a negative estimate 
of Q subtracted from Ppt leads to a Rinfil estimate greater than Ppt.  

 
If Qi < 0,        Equation L8 
Qi = 0  

 
If Qi ≥ 0,  
Qi calculated using Equation L7 

 

L3. Infiltrated Rainfall (Rinfil) Estimation 
 
L3.1. Rinfil for year “i” was calculated using Ppti and Qi to solve Equation L9.  

 
Input Rasters:  
• Annual kriged precipitation (Ppt). 
• Annual Q calculated using Equations L2 - L8. 
 
Rinfili = Ppti – Qi       Equation L9 
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L4. Annual Evapotranspiration Estimation (ETa) 
 
L4.1. ETa for year “i” calculated using Ppti, the ETa intercept, and the ETa slope to 

solve Equation 10. This initial estimate of ETa was refined using Equations L11 
and L12, below, to produce a final estimate of ETai. 
 
Input Rasters:  
• Annual kriged precipitation (Ppt). 
• ETa intercept (a).  
• ETa slope (b).   
 

 ETai = aETa + bETa * (Ppti)      Equation L10 
 
L4.2. To correct for a bias in ETa calibration in modern urban areas, an adjustment was 

applied to ETa estimates for the years before the modern urban extent was 
reached. For pre-urban conditions, the NDVI* ratio (urban cell/regional average) 
was used to boost ETa to match the average in the surrounding countryside. Note 
that “Pre-Urban NDVI Ratiok” describes the NDVI* raster from time-step “k” (the 
appropriate rasters for each model time-step are listed in Table L5). For each 
time-step the Pre-Urban NDVI Ratio raster was masked to the modeled pre-urban 
extent and was populated with the value “1” in all other locations—when “1” is 
input for Urban NDVI Ratio value the ETa estimated using Equation L10 is 
unchanged.  

 
Table L5. Pre-Urban NDVI* ratio rasters used in model ETa calculations. 

 
 
 
 
 
 
 
 
 
 

 
 
ETa   = ( ETa calculated using Equation L10 )  +               Equation L11  

             ( 1 – Pre-Urban NDVI Ratiok ) * ( ETa calculated using Equation F2 ) 
 
 
 
 
 
 

Time-Step “k” 
NDVI* Ratio Raster  

(Pre-Urban NDVI Ratiok) 

1960 – 1977 ETa_Pre_Urban_NDVI_Ratio_1.tif 

1978 – 1989 ETa_Pre_Urban_NDVI_Ratio_2.tif 

1990 – 1999 ETa_Pre_Urban_NDVI_Ratio_3.tif 

2000 – 2009 No Adjustment 
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L4.3. ETa was capped at annual precipitation using Equation L12.  
 

If ETai > Ppti,  Equation L12 
ETai = Ppti  
 
If ETai ≤ Ppti,  
ETai calculated using Equation L11. 

 

L5. Annual GWr Estimation: GWr Plateau and GWr Blended 
 
L5.1. GWr for year “i” was first estimated from Rinfili and ETai using Equation L13. 

The initial estimate from Equation L13 was then refined to produce two separate 
GWr estimates: GWr Plateau and GWr Blended (described below). 

 
Input Rasters:  
• Rinfil estimated using Equation L9 
• ETa estimated and refined using Equations L10 through L12. 

 
GWri = Rinfili - ETai  Equation L13 

 
L5.2. GWr Plateau was estimated from GWri using two rasters: Threshold 2 and Max 

GWr. Threshold 2 represents a critical Ppt/ET0 value above which GWr is set 
equal to the maximum GWr for that pixel. This estimate was further refined using 
equations L15 through L17. 
 
Input Rasters:  
• GWr initial estimates calculated using Equation L13. 
• Annual kriged Ppt. 
• ET0 estimated using Equation L1. 
• Threshold 2. 
• Max GWr. 
• Reservoirs. 

  
If Ppt / ET0i ≤ Threshold 2,       Equation L14 
GWrPlateaui = GWri calculated using Equation H1    

 
If Ppt / ET0i > Threshold 2,  
GWrPlateaui = Max GWr   
 
L5.2.1. GWr Plateau for year “i” was capped at Ppti using Equation L15.  

 
 If GWrPlateaui > Ppti,  Equation L15 
 GWrPlateaui = Ppti  

 
If GWrPlateaui ≤ Ppti,  
GWrPlateaui calculated using Equation L14 
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L5.2.2. Negative estimates of GWr Plateau for year “i” were replaced with zeros 
using Equation L16. 

 
If GWrPlateaui < 0,       Equation L16 
GWrPlateaui = 0        

 
If GWrPlateaui ≥ 0,  
GWrPlateaui calculated using Equation L15 

 
L5.2.3. Final GWr Plateau estimates were set to zero over reservoirs using 

Equation L17. 
 

If Reservoir Raster Value = 1,      Equation L17 
GWrPlateaui = 0        

  
If Reservoir Raster Value = 0,  
GWrPlateaui calculated using Equation L16 

  
L5.3. GWr Blended uses both the GWr estimated from the Plateau model and an 

estimate generated using a linear regression through the minimum and maximum 
GWr at each pixel.  

 
Input Rasters:  
• GWr initial estimates calculated using Equation L13. 
• GWr Plateau estimates calculated using Equation L14 and refined using 

Equations L15 – L17. 
• Annual kriged Ppt. 
• ET0 estimated using Equation L1. 
• Threshold 2. 
• GWr Min/Max intercept (a). 
• GWr Min/Max slope (b). 
• Reservoirs. 
 
L5.3.1. GWr Min/Max was estimated using Ppti, ET0i, and the GWr Min/Max 

intercept and slope to solve equation L18. This estimate was further 
refined using equations L19 through L21. 

 
GWrMin/Maxi = aGWr + bGWr *  Ppti / ET0i  Equation L18 

 
L5.3.2. GWr Min/Max for year “i” was capped at Ppti using Equation L19.  

 
 If GWrMin/Maxi > Ppti,  Equation L19 
 GWrMin/Maxi = Ppti 

  
If GWrMin/Maxi ≤ Ppti,  
GWrMin/Maxi calculated using Equation L18 
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L5.3.3. Negative estimates of GWr Min/Max for year “i” were replaced with 
zeros using Equation L20. 

 
If GWrMin/Maxi < 0,      Equation L20 
GWrMin/Maxi = 0 

 
If GWrMin/Maxi ≥ 0,  
GWrMin/Maxi calculated using Equation L19 

 
L5.3.4. Final GWr Min/Max estimates were set to zero over reservoirs using 

Equation L21. 
 

If Reservoir Raster Value = 1,     Equation L21  
GWrMin/Maxi = 0  

 
If Reservoir Raster Value = 0,  
GWrMin/Maxi calculated using Equation L20 

 
L5.3.5. Final GWr Plateau and GWr Min/Max estimates were used to calculate 

GWr Blended for year “i” using equation L22.  
 

If Ppt / ET0i ≤ Threshold 2,      Equation L22 
 GWrBlendedi = GWri calculated using Equation H1   

 
If Ppt/ET0i > Threshold 2,  
GWrBlendedi = ( 0.7 * GWrPlateaui  calculated using Equation L17) +  
( 0.3 * GWrMin/Maxi calculated using Equation L21) 

 

L6. Delivered Model Variables 
 
The model variables described above were delivered as individual rasters and as 
geodatabases for the years 1960 – 2009. All variables are reported in inches per year. 
 
• Kriged precipitation (Ppt). 
• Reference evapotranspiration (ET0) calculated using equation L1. 
• Discharge (Q) calculated using equations L3 – L8. 
• Infiltrated rainfall (Rinfil) calculated using equation L9. 
• Annual Evapotranspiration (ETa) calculated using equations L10 – L12. 
• Plateau model groundwater recharge (GWrPlateau) calculated using equations L13 – 

L17. 
• Blended model groundwater recharge (GWrBlended) calculated using equations L13 

and L18 – 22. 
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Deeply incised channels like this one carry large amounts 
of runoff from the Blackland soil region. 
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M. Appendix 4: Draft Report Comments and Responses 
 
1. TWDB Comment: Please remove the word draft from all headers and re-submit as 

final report. 
HydroBio Response: Draft removed from all headers for final submission of report. 

 
2. TWDB Comment: Please adjust size of the pdf of report to less than 10MB for ease 

of downloads from web and due to size limitations for attaching report to emails (or 
break report into smaller components). 
HydroBio Response: Report images were compressed to meet size requirement. 
 

3. TWDB Comment: Page C3: please consider re-writing statement “Q was chosen 
because it is the water that is exported out as measurable flow, hence unavailable to 
recharge groundwater”. Surface water/groundwater interactions due to streambed 
seepage are frequently considered a source of inflow/recharge to the aquifer system. 
Possibly eliminate “hence unavailable to recharge groundwater”. 
HydroBio Response: Removed “hence unavailable to recharge groundwater” from the 
end of statement. This qualifier was unnecessary to the explanation of modeling Q 
provided for the report. 

 
4. TWDB Comment: Page C11, caption for Figure C10: for clarity please adjust 

reference to figures in the caption from “top” and “bottom” to “left” and “right”. 
HydroBio Response: Caption corrected. 

 
5. TWDB Comment: Page E7: please update reference to figure in line 3 from F3 to E3 

and adjust location of table caption for Table E3 to stay on the same page as the table. 
HydroBio Response: Reference corrected. Table E3 placement adjusted to fall on the 
same page as the caption. 
 

6. TWDB Comment: Section F: please review references to figures and adjust as 
needed. For example figures appear on page F2 with a caption, “F2. ETa driving 
variables”. 
HydroBio Response: Figure on page F2 was unnecessary and was removed. 
Discussion in paragraph one relating to this figure was also unnecessary and 
removed. All other Section F figure and table references and captions verified and 
corrected as necessary. 
 

7. TWDB Comment: Page H1: please update caption for Figure H3 to Figure H1. 
HydroBio Response: Caption corrected. 
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